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A key goal of solid-state quantum optics:

Realizing an array of anharmonic quantum emitters whose properties - such as resonance

energy & photon emission rate — are set through electric field tunable quantum confinement

2D excitons are weakly interacting: reduced dimensionality + strong-coupling to cavities are

key for realizing strong interactions - photon blockade effect

How to go from 2D excitons to isolated 1D or OD excitons?
- excitons are neutral but are polarizable using dc electric fields (F): AEs = —%an

- Spatially inhomogeneous strong in-plane electric fields F(r) could confine excitons at

the field maxima



Our approach: electric-field confinement of exciton
center-of-mass motion using gated TMD structures

- Strong inhomogeneous electric fields can be

generated using proximal gates which effect a T
hBN ; =V,
monolayer p-i-n diode (“fffez_v
hBN By T "o

- Strong exciton binding (E, = 200 meV) ensures ﬁJ

that excitons are resilient against ionization

* Peak in-plane fields of F = 0.1 V/nm extending

over 50 nm create a_ harmonic potential with

length scale £, = mi) < 10 nm.

o O

- N W b
o

F. (V/pm)

n-plane electric field

o O

; _ , _ _ _ _ 10
-80 -60 -40 -20 0 20 40 60 80
Position x (nm)




Quantum confinement of neutral excitons using electric fields
Device structure

» Stack:

Au back gate/ hBN / 1L
MoSe, / hBN / Au split gate
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Quantum confinement of neutral excitons using electric fields

Set top gate to O V

For Vi = 5V (black dashed line), g

the sample 1s electron doped 3nm Ti/ 7 nm Au split gate = Optically

transparent



Quantum confined excitons in a p-i-n diode
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As we reduce V5 we can
hole dope under the top gate;
there 1s large electric field in
the i-region that separates p-
and n-doped regions
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Quantum confined excitons in a p-i-n diode

Interaction-induced confinement
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Quantum confined excitons in a p-i-n diode

Interaction-induced confinement
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* The large electric field confines the center-of-mass motion but couples the 1s exciton
(relative electron-hole motion) state to a continuum of 10nized electron-hole states. Yet,
small Bohr radius ensures that excitons decay predominantly radiatively.

* The exciton-electron interaction induced confinement potential has an imaginary part
due to decay into attractive polaron branch.
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Quantum confined excitons in a p-i-n diode
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Quantum confined excitons in a p-i-n diode
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Evidence for 1D confinement: linearly polarized emission
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Long-range electron-hole exchange ensures that the exciton emission is polarized along the wire



Quantum confinement of excitons in another device

* Simple structure: a top graphene gate that only partially covers the TMD:
1D excitons along the edge of the top gate
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A terrible p-1-n photo-
detector but an exciting
quantum device!
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Next steps

Strongly interacting photons: so far the successful efforts used either 0D
emitters (transmons in circuit-QED) or Rydberg excitations from 3D atomic

ensembles.

- a 1D exciton wire in a OD cavity as a solid-state photonic system with

strong polariton interactions in the photon blockade regime

i graphene
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Next steps

Strongly interacting photons: so far the successful efforts used either 0D
emitters (transmons in circuit-QED) or Rydberg excitations from 3D atomic

ensembles).

- a 1D exciton wire in a OD cavity as a solid-state photonic system with

strong polariton interactions in the photon blockade regime

1D excitons could have dipolar length exceeding 100 nm: transition from a

Tonks-Girardeau gas to a Wigner crystal of excitons
Synthetic gauge fields for photons: gA=a Ex B

Fully electrically defined and tunable quantum dots in monolayer TMDs.
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