
Cavity-QED with 2D excitons

Key requirement for high-Q cavities: the graphene 
gates need to be placed at the node of the cavity mode



Cavity-polaritons with 2D materials
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Attractive-polaron-polaritons in high-Q cavities

• AP-LP is shifted away from the continuum of many-body states and could have nearly 
cavity-limited line-broadening.



Time-resolved pump-probe spectroscopy



Enhancement of polariton-polariton interactions

• Factor of 5 enhancement of polaron-polariton interactions as 
compared to bare exciton-polaritons.

𝑔𝑔𝐿𝐿𝐿𝐿 = 2 𝜇𝜇𝜇𝜇𝜇𝜇 𝜇𝜇𝑚𝑚2

𝑛𝑛𝐿𝐿𝐿𝐿 ≈ 3 × 1010𝑐𝑐𝑚𝑚−2





Epilogue: a taste of many-body physics

F. Wu et al., Phys. Rev. Lett. 121, 026402 (2018)

Heavy effective mass (m*~0.7me)
→ Flat band in wide range of angles
→ Tunable lattice period

Twisted bilayer transition metal dichalcogenide
(TMD)WSe2/MoSe2

Electrical contact
Inhomogeneity due to strain

Local probe by optical spectroscopy

Difficulties

Recent experiments showed Mott-Wigner states & quantum anomalous Hall effect



Fermi liquid
(small       )

Is an external superlattice potential/flat-bands necessary 
to observe strong correlations?

rs parameter

and

Interplay between
the kinetic energy and inter-electron Coulomb repulsion

(large )

Increasing Wigner crystal

E. Wigner, Phys. Rev. 46, 1002 (1934) 

Lowering
electron density

Spontaneous breaking of continuous translation symmetry!



Prospects for Wigner crystal in 2D semiconductors: 
transition metal dichalcogenide (TMD) monolayers

Reduced screening due
to hBN encapsulation for

Ultra-large
hBN

hBN
Very large electron

effective mass
1.

S. Larentis et al., Phys. Rev. B 97, 201407 (2018) 
R. Pissoni et al., Phys. Rev. Lett. 121, 247701 (2018) 

A. Laturia et al., npj 2D Mater. Appl. 2, 6 (2018) 

2.

Wigner crystalization 
at B = 0?

𝑟𝑟𝑠𝑠 > 40
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How does the electronic state modify exciton-polaron
dispersion at B=0?

• Excitons outside the light cone are split into longitudinal and transverse branches
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How does the electronic state modify exciton-polaron 
dispersion at B=0?

• Excitons outside the light cone are split into longitudinal and transverse branches

• If electrons are in a liquid state, exciton dispersion blues shifts, as it becomes a repulsive polaron (RP)

• If the electrons form a Wigner crystal (WC), Bragg-umklapp scattering yields new k=0 resonances

Interaction of excitons
with electrons in a WC 
effect a superlattice
potential for excitons



Repulsive-polaron at B=0

• Focus on RP in the low electron density regime ne < 5x1011 cm-2
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Repulsive-polaron at B=0

• Focus on RP in the low electron density regime ne < 5x1011 cm-2

• Differentiating the reflection spectrum w.r.t. gate voltage, reveals a blue-shifted peak

• The energy difference between the higher energy peak and RP scales as             , 

consistent with a triangular lattice of electrons.



Temperature dependence of the umklapp peak

Enhanced thermal fluctuations of the el
ectrons suppress the umklapp intensity



Temperature dependence of the umklapp peak
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Wigner crystal of electrons at B= 6T

• Umklapp peak is stronger due to more robust WC, extending up to ν=2 

• While the k=0 RP peaks split due to valley-Zeeman effect, the umklapp peaks 
show vanishing splitting – due to their predominantly high-k nature.



Wigner crystal of electrons at B= 6T

• Umklapp peak is stronger due to more robust WC, extending up to ν=2 

• While the k=0 RP peaks split due to valley-Zeeman effect, the umklapp peaks 
show vanishing splitting – due to their predominantly high-k nature.
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