Cavity-QED with 2D excitons

Cavity-polaritons with 2D materials

Exciton - polaron - polaritons
• If the 2D material is inside a covity, then

$$H \rightarrow H + \sum_{p} W_{c}(p) a_{p}^{+}a_{p} + \sum_{p} g_{c}(p) [a_{p}^{+}x_{p} + x_{p}^{+}a_{p}]$$

• Due to steep cavity dispersion, we only need
to consider exciton dressing; i.e.
 $|\Psi_{n,p}\rangle = [\mathcal{N}_{n,p} a_{p}^{+} + \mathcal{P}_{n,p} x_{p}^{+} + \sum_{k>q} \Psi_{n}(k,q) x_{p+q-k}^{+}e^{kq}]^{k}$
yields:
 $E_{n,p} = W_{x}(p) + \sum_{x} (E_{n,p}) + \frac{q^{2}}{E_{n,p}} - W_{c}(p)$

Attractive-polaron-polaritons in high-Q cavities

• AP-LP is shifted away from the continuum of many-body states and could have nearly cavity-limited line-broadening.

Time-resolved pump-probe spectroscopy

Enhancement of polariton-polariton interactions

 Factor of 5 enhancement of polaron-polariton interactions as compared to bare exciton-polaritons.

A new mechanism for enhancing polariton - polariton interactions · Attractive polaron-polariton splitting $g \cong g_{c-x} k_F a_T \left(\begin{array}{c} g_{c-x} & exciton-convity \\ coupling \end{array}\right) k_F \propto \sqrt{ne} : Fermi$ at: trion Bohr routius -> Each polariton "removes an electron" from the Fermi sea such that when $\eta_{pol} \sim \eta_e$, attractive polarons cannot be formed: g -> 0 $\int \int \sqrt{\frac{g}{n_e}} = \frac{g_{c-x} \cdot k_F a_T}{n_e} \propto \frac{q_T}{a_B}$

Epilogue: a taste of many-body physics

Twisted bilayer transition metal dichalcogenide

(TMD)

F. Wu et al., Phys. Rev. Lett. 121, 026402 (2018)

Heavy effective mass (m*~0.7m_e)

 \rightarrow Flat band in wide range of angles

 \rightarrow Tunable lattice period

Difficulties

Electrical contact

Inhomogeneity due to strain

Local probe by optical spectroscopy

Recent experiments showed Mott-Wigner states & quantum anomalous Hall effect

Is an external superlattice potential/flat-bands necessary to observe strong correlations?

Prospects for Wigner crystal in 2D semiconductors: transition metal dichalcogenide (TMD) monolayers

Very large electron $m_e^* \approx 0.7 m_e$ effective mass S. Larentis et al., Phys. Rev. B 97, 201407 (2018) R. Pissoni et al., Phys. Rev. Lett. 121, 247701 (2018) Reduced screening due

to hBN encapsulation $\epsilon_{\rm hBN}^{"} \approx 4$

A. Laturia et al., npj 2D Mater. Appl. 2, 6 (2018)

Wigner crystalization at B = 0?

Ultra-large $r_s > 40$ for $n_e \sim 1 \cdot 10^{11} \text{ cm}^{-2}$

Prospects for Wigner crystal in 2D semiconductors: transition metal dichalcogenide (TMD) monolayers

How does the electronic state modify exciton-polaron dispersion at B=0?

• Excitons outside the light cone are split into longitudinal and transverse branches

How does the electronic state modify exciton-polaron dispersion at B=0?

- Excitons outside the light cone are split into longitudinal and transverse branches
- If electrons are in a liquid state, exciton dispersion blues shifts, as it becomes a repulsive polaron (RP)

How does the electronic state modify exciton-polaron dispersion at B=0?

- Excitons outside the light cone are split into longitudinal and transverse branches
- If electrons are in a liquid state, exciton dispersion blues shifts, as it becomes a repulsive polaron (RP)
- If the electrons form a Wigner crystal (WC), Bragg-umklapp scattering yields new k=0 resonances

Repulsive-polaron at B=0

• Focus on RP in the low electron density regime $n_e < 5x10^{11}$ cm⁻²

Repulsive-polaron at B=0

- Focus on RP in the low electron density regime $n_e < 5x10^{11}$ cm⁻²
- Differentiating the reflection spectrum w.r.t. gate voltage, reveals a blue-shifted peak

Repulsive-polaron at B=0

- Focus on RP in the low electron density regime $n_e < 5x10^{11}$ cm⁻²
- Differentiating the reflection spectrum w.r.t. gate voltage, reveals a blue-shifted peak
- The energy difference between the higher energy peak and RP scales as $\frac{h^2 n_e}{\sqrt{3}m_X}$, consistent with a triangular lattice of electrons.

Temperature dependence of the umklapp peak

Temperature dependence of the umklapp peak

Temperature dependence of the umklapp peak

Wigner crystal of electrons at B= 6T

- Umklapp peak is stronger due to more robust WC, extending up to v=2
- While the k=0 RP peaks split due to valley-Zeeman effect, the umklapp peaks show vanishing splitting due to their predominantly high-k nature.

Wigner crystal of electrons at B= 6T

- Umklapp peak is stronger due to more robust WC, extending up to v=2
- While the k=0 RP peaks split due to valley-Zeeman effect, the umklapp peaks show vanishing splitting – due to their predominantly high-k nature.