International School of Physics "Enrico Fermi"

COURSE 211 – QUANTUM MIXTURES WITH ULTRA-COLD ATOMS

Giacomo Lamporesi

INO-CNR Trento

This Lecture (Part One)

This Lecture (Part Two)

Experimental requirement : low magnetic field noise environment

to study the dynamics to keep coherence $g_F \mu_B \Delta B \stackrel{\sim}{\ll} \hbar \Omega \stackrel{\sim}{<} n \delta g \ll ng$

		1 nK 10 nK	15 nK 150 nK
1 Hz 10 Hz	10 Hz 100 Hz	20 Hz 200 Hz	300 Hz 3 kHz
1 μG 10 μG			

MAGNETIC SHIELD

Exploded View Showing Stages of Asser

HALF SECTION

(a)

iterations

Field stability: A few µG over hours

Farolfi et al., Rev. Sci. Instrum. 90, 115114 (2019)

TWO-LEVEL SYSTEM

Ω

 $|a\rangle$

 $|b\rangle$

 $\Omega \neq 0$

FARADAY WAVES (miscible mixture)

Measurement of density and spin dispersion relations

$$\begin{array}{c} \omega_{2} \\ \omega_{1} \end{array} \\ n_{\uparrow} + n_{\downarrow} \\ \omega_{2} \\ \omega_{1} \end{array}$$

$$E_{d,s}(k) = \hbar\omega_{d,s}(k) = \sqrt{\frac{\hbar^2 k^2}{2m} \left(\frac{\hbar^2 k^2}{2m} + 2\mu_{d,s}\right)}$$

$$E_s(k) = \hbar\omega_s(k) = \sqrt{\left(\frac{\hbar^2 k^2}{2m} + \hbar\Omega\right)\left(\frac{\hbar^2 k^2}{2m} + 2\mu_s + \hbar\Omega\right)}$$

Massive spin excitations

TWO-LEVEL SYSTEM - Single atom

 $|a\rangle$

 $i\hbarrac{\partial}{\partial t}\psi_a = \left(-rac{\hbar^2}{2m}
abla^2 + V + g_a|\psi_a|^2 + g_{ab}|\psi_b|^2
ight)\psi_a - rac{\hbar\Omega}{2}\psi_b$ Ω $i\hbar\frac{\partial}{\partial t}\psi_b = \left(-\frac{\hbar^2}{2m}\nabla^2 + V + g_b|\psi_b|^2 + g_{ab}|\psi_a|^2\right)\psi_b - \frac{\hbar\Omega^*}{2}\psi_a$

Generic **state** of the system

$$|\psi
angle = c_a |a
angle + e^{i\phi} c_b |b
angle$$

Spin (state)

Bloch Vector

Population difference Phase difference

$$s_z = c_a^2 - c_b^2 \qquad |\mathbf{s}| = 1$$

$$\phi$$

R

 $\Omega' = \sqrt{\Omega^2 + \overline{\Delta^2}}$ Dynamics: Precession about **W** at

 $\mathbf{W} = (\Omega, 0, \Delta)$

 $\dot{\mathbf{R}} = \mathbf{W} \times \mathbf{R}$ $\dot{\mathbf{R}} \cdot \mathbf{W} = 0$

Zibold et al., PRL 105, 204101 (2010)

MAGNETIC ANALOGUE

PHASE DIAGRAM

Para to Ferromagnetic QPT

EXPERIMENT

Measurement of the equation of state of magnetic systems

Cominotti et al., in preparation (2022)

DIVERGING QUANTITIES AT THE CRITICAL POINT

Domain walls Between ferromagnetic regions

Cominotti et al., in preparation (2022)

→ POSTER 10 (Cominotti)

Nicklas et al., PRA 92, 053614 (2015)

Nicklas et al., PRL 92, 107193 (2011)

 $\mathcal{H} = -\alpha \left(\mathbf{W}(\mathbf{s}) \cdot \mathbf{s} \right)$ b Local evolution 2 $\kappa n / (2 \Omega_R)$ $\dot{\mathbf{s}} = \mathbf{W}(\mathbf{s}) \times \mathbf{s}$ Adding external degrees of freedom: 0 $\dot{n} + \partial_x j = 0$ Z=0 С Z = +1Z = -1n satisfies continuity eq. s does not $\Omega_{\rm R} t/2\pi$ $\dot{\mathbf{s}} + \partial_x \mathbf{j}_{\mathbf{s}} = \mathbf{W}(\mathbf{s}) imes \mathbf{s}$ Landau Lifshitz **Dissipationless LLE** Equations **d** 0 Spin current $\mathbf{j}_{\mathbf{s}} = v\mathbf{s} + \frac{\hbar}{2mn}\partial_x\mathbf{s} \times \mathbf{s}$ Ω_Rt/2π 3advection Constant n: 4. 0.0 0.4 0.2 0.6 0.8 1.0 x/R_x $\dot{\mathbf{s}} + \partial_x \left(\frac{\hbar}{2mn} \partial_x \mathbf{s} \times \mathbf{s} \right) = \mathbf{W}(\mathbf{s}) \times \mathbf{s}$ Farolfi et al., Nat. Phys. 17, 1359 (2021)

Quantum torque

QUANTUM TORQUE

QUANTUM TORQUE

0 1 а 1 С Ω_Rt/2π 0 N 3 4 -1 200 -200 -150 -100 -50 50 100 150 0 x (µm)

GPE

Spin waves with anticorrelations On lengths of a few ξ_{s}

Farolfi et al., Nat. Phys. 17, 1359 (2021)

QUARK CONFINEMENT

Son and Stephanov, PRA **65**, 063621 (2002) Eto and Nitta, PRA **97**, 023613 (2018) Tylutki et al., PRA **93**, 043623 (2016) Gallemí et al., PRA **100**, 023607 (2019)

QUARK CONFINEMENT

Son and Stephanov, PRA **65**, 063621 (2002) Eto and Nitta, PRA **97**, 023613 (2018) Tylutki et al., PRA **93**, 043623 (2016) Gallemí et al.,PRA **100**, 023607 (2019)

QUARK CONFINEMENT

VORTEX CONFINEMENT

Son and Stephanov, PRA **65**, 063621 (2002) Eto and Nitta, PRA **97**, 023613 (2018) Tylutki et al., PRA **93**, 043623 (2016) Gallemí et al., PRA **100**, 023607 (2019)