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The talk is focused on the equation (LLE)
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PARADIGMATIC MODEL FOR NONLINEAR
CHEMICAL REACTIONS: THE "BRUSSELATOR"

(I Prigogine and R. Lefever, J. Chem. Phys. 48, 1695 (1968))
TWO EQUATIONS:
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X,Y = normalized concentration of reactants
T, y,t =normalized space-time coordinates
A,B = parameters

D, D, = diffusion coefficients

Turing instability

large aspect
ratio system

side view




Optical Pattern Formation




IN THE CASE OF OPTICS, THE ROLE OF DIFFUSION (COUPLING THE
SPATIAL POINTS (x,y)) IS PLAYED BY DIFFRACTION.

If we indicate by &£ the linearly polarized electric field, treated as a
scalar, we write

1 . . . ;
E(x,y,z,t) X 5 [E<$7y727t)6—zwo(t—z) 4+ E*($7y727t)esz(t—E)}

where wq is the reference frequency and E the slowly varying envelope.
In the paraxial approximation, diffraction is described by a term pro-

portional to the transverse Laplacian i (88—;2 —- g—;) E(x,y,z,t)| which

has the same form of diffusion apart from the presence of the imaginary
unit.

However, the typical configuration of optical systems appears at first
sight the contrary of that of a large aspect ratio system, because

- Laser beams are usually well focused and therefore narrow

- In the description of laser beams, propagation in the longitudinal

direction z 1s important, therefore in general the coordinate z cannot
be 1gnored.




The first point 1s not a difficulty, because one can consider broad
section laser beams. The second point 1s, instead, a major difficulty

in view of the goal of constructing a model with the same level of
simplicity as the Brusselator. As a matter of fact, the models initially
used to describe transverse optical patterns (e.g. Moloney and Gibbs,
Phys.Rev. Lett. 48, 1607 (1982)) were substantially more complicated.

However, previous work on the analysis of nonlinear optical cavities
neglecting transverse effects (1.e. neglecting diffraction) had shown
that there are conditions in which the electric field envelope 1s
basically uniform along the cavity, so that the variation of £ along z
can be neglected 1n the stationary state, which allows to get rid of the
variable z. Such conditions are defined by the "high-Q limit" (also
called "mean field limit" or "uniform field limit" in the literature)
introduced 1n Bonifacio and Lugiato, Nuovo Cimento 21, 505 (1978).



Qualitatively, the high-Q limit prescribes that:
1) The medium is located into a cavity with mirrors of low transmission

E, T<<l1 T<<1

U R ring cavity

T=0 T=0

v

2) In a single pass through the medium, the field envelope undergoes a small
variation. There are two possibilities: i) the medium is thin
i) the nonlinearity is weak

Combining points 1) and 2) one has that, since the field envelope goes
through the medium several times before going out of the cavity because of
the small transmissivity, it undergoes a significant variation in time.



CHOICE OF THE NONLINEARITY

The aim 1s to construct a model in which the only variable 1s the field
envelope £, which 1s complex, so that the model involves two equations
like the Brusselator.

Hence the model must not involve equations for material variables.
The choice of the nonlinearity follows a criterium of simplicity .

Quadratic nonlinearities are not appropriate, because they involve
two envelopes, one for the fundamental and one for the harmonic.
The simplest choice 1s that of a cubic nonlinearity, 1.¢. the

Kerr non-linearity proportional to

ix® E|E|?

In conclusion, the model includes the nonlinear term, the diffraction
term and three terms which arise from the presence of the cavity
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1 = Nonlinearity (self-focusing)

2 = Diftraction

3 = F’ = stationary, uniform, monochromatic input field

4 = Field damping with damping rate x = %

T= mirror transmissivity, £ = ring cavity length

. . We — W
5 = Cavity detuning o = —
K
. = cavity frequency nearest to ®,
t=~kt, T= i, y = ﬂ, T X —'M, A= me wavelength
T T T wo

F and E are appropriately normalized to reduce parameters to the minimum



An advantage with respect to the Brusselator is that the Kerr medium
model 1s realistic, whereas a realistic model for nonlinear chemical
reactions involves many more than two equations (see Nicolis, Intro-
duction to nonlinear science, Cambridge University Press, 1995).

HOMOGENEOUS STATIONARY SOLUTIONS

The homogeneous (%ig + g}% — O) and stationary (%—? — O) solution

obeys the equation

F =Fy[1+i(|Est]” — )]

so that one obtains (Gibbs, McCall, Venkatesan, Phys. Rev. Lett 36,
1135 (1976))

F? =|Ea)? [14 (o — |Est]?)?]
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OPTICAL BISTABILITY

E [

st

The linear stability analysis of the homogeneous stationary solutions showed
the existence of a spatial modulational instability. An analytical calculation
performed in 1D demonstrated that the pattern which develops beyond the
instability threshold is stable under appropriate parametric conditions.
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The Kerr nonlinearity corresponds to the process of four-wave mixing. A pos-

sibility is that two photons which propagate in the longitudinal direction (E = 0) are
absorbed, and two photons which propagate symmetrically (transverse wave vectors

—

k,—k) are emitted.

—

—k

:

E=F, 6736'5 1 g 't eiE'f 1+ g et?- e—iE-f Turing pattern
— Fy, %% 4+ 20 cos {/; T+ (¢ — qb_)} e (++¢-)
Due to the rotational symmetry any rotated version of the figure is possible.
g p

1D case (y only)

E = FEg + 20 cosky + (¢ — ¢_)] e3 ($+—-)

A remark of paramount importance is that the two photons, emitted in tilted directions, are in a
state of quantum entanglement (they are entangled in energy and momentum). This fact is
fundamental for the quantum aspects of optical patterns and, more in general, for the field
of quantum imaging (see Gatti, E. Brambilla, Lugiato, in Progress in Optics Vol LI)




2D case (x,y) = roll patterns

However, in 2D the roll pattern 1s destabilized

k )
o
o . .
6 2 A second four-wave mixing process creates two
¢ 0 ¢ additional photons (2 and 6) from 0 and 1, and
? -k, the pair of 3 and 5 from 0 and 4, which gives a
N .° hexagonal structure.
°
4

D. Gomila and P. Colet, Phys. Rev. E 76, 16217 (2007) analyzed the hexagonal patterns which
arise in the model.
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Global and localized structures in optical systems

Highly correlated configurations (global structures) or independent, isolated
intensity peaks (localized structures) appear in the transverse field profile.

Experiments (Muenster university)

(a) (b)

(a) Localized structures (M. Tlidi, P. Mandel and R. Lefever, Phys. Rev. Lett. 73, 64 (1994))
(b) global structures in sodium vapour; (c) global structures in LCV.

Kerr cavity soliton
i
. TRF

Scroggie, Firth, McDonald, Tlidi, Lefever, Lugiato, Chaos, Solitons and Fractals 4, 1323 (1994)
Firth, Harkness, Lord, McSloy, Gomila, Colet, J. Opt. Soc. Am. B 19,747 (2002)
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THE TEMPORAL/LONGITUDINAL VERSION OF THE LLE

(M. Haelterman, S. Trillo, S. Wabnitz, Opt. Commun. 91, 401 (1992))

They were 1nspired by the analogy between two kinds of Hamiltonian

solitons:

*Temporal solitons, described by a nonlinear Schroedinger equation
with frequency (chromatic) dispersion

*Spatial solitons, described by a nonlinear Schroedinger equation
with diffraction (transverse Laplacian)

and extended this analogy to the dissipative case of an optical cavity

They considered a nonlinear fiber toT

loop with an input/output mirror. E, B
In the practical realization the . .
mirror 1s replaced by mput and /
output fiber couplers




SOLITONS IN PROPAGATION PROBLEMS

Solitons are localized waves that propagate
(in nonlinear media) without change of form

Temporal Solitons: no dispersion broadening

2M0 ID
“—— diffraction
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HTW arrived at the equation

2

OB o
(*) EZF—E—laE+l|E|E+lﬁ

where

(o |

= Kt
Z normalized longitudinal variable z (normalization includes dispersion)

IN OUT
)Z
CIRCULAR CAVITY

Once Eq. (*) has been solved with periodic boundary condition in z, in the
solution E(Z,t), z must be replaced by z — v,t , which means that
the spatial pattern rotates along the cavity with the group velocity v,.

Eq. (*) 1s equivalent to the LLE in 1D. Instead of the transverse variables x and y,
there 1s the longitudinal variable z.



TWO REM ARKS

1) A model, equivalent to the temporal/longitudinal version of the LLE introduced
by HWT, was derived from the Maxwell-Bloch equations in

BRAMBILLA, CASTELLI, GATTI, LUGIATO, PRATI in SUSSP Proceedings 41, 115 (1993)

The complete derivation is found in SAME AUTHORS, Eur. Phys. J. D 71, 84 (2017)

2) The pattern forming instability of the temporal/longitudinal LLE is a special case of the
MULTIMODE INSTABILITY OF OPTICAL BISTABILITY

(BONIFACIO, LUGIATO, Lett. Nuovo Cimento 21,510 (1978)
BONIFACIO, GRONCHI, LUGIATO, Opt. Commun. 30, 129 (1979) )




TEMPORAL/LONGITUDINAL KERR CAVITY SOLITONS

&3

Intensity
=

0 5 10 15 20 26 0 35 40 45 S0

[

0

*A temporal cavity soliton 1s a
narrow pulse that circulates
indefinitely along the fiber cavity
without deformations, apart from
fluctuations, with a period equal
to the cavity roundtrip time

It sits over the pedestal of a stable uniform stationary solution
It 1s excited by injecting into the cavity an address pulse that adds to

the driving field

First experimental observation
Leo, Coen, Kockaert, Gorza,
Emplit, and Haelterman,
Nature Photonics 4, 471 (2010)

380 m silica optical fiber
CW driving field, 1551 nm
cavity roundtrip time 1.85 us
cavity soliton width ~ 4 ps
anomalous dispersion
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In the spectral domain the periodical train of pulses which arises from a
Turing pattern corresponds to a comb of frequencies

BROADBAND KERR FREQUENCY COMBS

Cornerstone experiment:
Del’Haye, Schliesser, Arcizet, Wilken, Holzwarth, Kippenberg,
Nature 450, 1214 (2007) in a high-Q microresonator with a Kerr medium



THE HIGH-Q LIMIT BECOMES REALITY

Ultra high quality factor microresonators

Q=w- 7> 1088

Hyerr = Nggapa, a;” as + -:-.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala. Nature 421, 925-928 (2003).

— - —




Discovery of microresonator frequency combs

frequencies

Driving laser
frequency

Image credit: S. Cundiff News&Views, Nature, Dec. 20, 2007

Del Haye,Schliesser,Wilkins, Holzwarth,Kippenberg, Nature, 2007
EU & US Patent application “Optical Comb Generator using

Microresonators”
TJ Kippenberg, et al., Science 2011




Microresonator based frequency combs

Fiber laser comb
line spacing 250 MHz
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0
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Dissipative Kerr solitons

“ “HN“MH“H sech?

~ 100 nm

W , y

Turing patterns

v

Laser scan

N

>

relative normalized intracavity power

0

Solitons

-

Blue detuned pump laser detuning

Adapted from: T. Herr et al., Nat. Photonics, 2013.
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CONNECTION BETWEEN THE LLE AND KERR FREQUENCY COMBS

Kerr frequency combs were discovered without being aware of the LLE.

The connection was pointed out later

MATSKO, SAVCHENKOV, LIANG, ILCHENKO, SEIDEL, MALEKI, Opt. Lett. 36,

2845 (2011)

- CHEMBO, MENYUK, Phys. Rev. A 87, 053852 (2013)

- HERR, BRASCH, JOST, WANG, KONDRATIEV, GORODETSKY, KIPPENBERG,
Nat. Photon. 2013, 343

- COEN, RANDLE, SYLVESTRE, ERKINTALO, Opt. Lett. 38, 37 (2013)



Courtesy Y.K. Chembo

Lugiato-Lefever equation for Kerr combs

Excellent agreement between experiments and simulations
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APPLICATIONS
Investigations on Kerr fequency combs have been applied to numerous areas,

including
- coherent telecommunications
- spectroscopy

- atomic clocks
- laser ranging
- astrophysical spectrometer calibration

See e.g. these reviews

- Kippenberg, Holtzwarth, Diddams, Microresonator-based optical frequency combs,
Science 332, 555 (2011)

- Chembo, Kerr optical frequancy combs: theory, applications and perspectives,

Nanophotonics 5, 214 (2016)

The LLE has been generalized to the case of Fabry-Perot cavity in
Cole, Gatti, Papp, Prati, Lugiato, Phys, Rev. A 98, 013831 (2018)
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Quantum cascade laser
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+ Intersubband: wavelength determined by layer thickness, not by the bandgap of the material!
« QCLs can be designed to emit from 3 to 300 pm

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, Science 264, 553 (1994)




In their paper “Frequency combs induced by phase turbulence”,
Nature 582, 560 (2020), Piccardo, Capasso et al. derive a complex
Ginzburg-Landau equation (CGLE) for the ring quantum cascade laser

near threshold

OF | O
=7 = E—(1—1ic)E|F|+ (1 +@C2)ﬁ

This equation has basically the same form of an equation formulated by
Lugiato, Oldano, Narducci, J. Opt. Soc. Am. B 5, 879 (1988).
OF 0°E

(*) 5 = —E(1 —iA)(|E|* —7r) + ia@

as the laser counterpart of the LLE, formulated for optical bistability.

As in the original LLE, x is a transverse variable. Therefore equation (*)
plays, with respect to the quantum cascade laser, a role analogous to that of
the LLE in fiber cavities and in microcavities.

Therefore the LLE works for both microresonators without population

inversion and for ring quantum cascade lasers near threshold.
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Unifying Frequency Combs in Active and Passive Cavities: Temporal Solitons in
Externally Driven Ring Lasers

L. Columbo ,"2'* M. Piccardo ,3'4‘*'* F. Prati ,5 L. A. Lugiato ,5 M. Brambilla,6 A. Gatti ,7'5 C. Silvestri,1
M. Gioannini,l N. Opacak ,8 B. Schwarz ,8 and F. Capasso 4
1Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, 10129 Torino, Italy
2CNR-Istituto di Fotonica e Nanotecnologie, 70126 Bari, Italy
3 Center for Nano Science and Technology, Fondazione Istituto Italiano di Tecnologia, 20133 Milano, Italy
*Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02134, USA
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SInstitute of Solid State Electronics, TU Wien, 1040 Vienna, Austria

® (Received 8 October 2020; accepted 29 March 2021; published 30 April 2021)

Frequency combs have become a prominent research area in optics. Of particular interest as integrated
comb technology are chip-scale sources, such as semiconductor lasers and microresonators, which consist
of resonators embedding a nonlinear medium either with or without population inversion. Such active and
passive cavities were so far treated distinctly. Here we propose a formal unification by introducing a general
equation that describes both types of cavities. The equation also captures the physics of a hybrid device—a
semiconductor ring laser with an external optical drive—in which we show the existence of temporal
solitons, previously identified only in microresonators, thanks to symmetry breaking and self-localization
phenomena typical of spatially extended dissipative systems.

DOI: 10.1103/PhysRevLett.126.173903

Formulation of a GENERALIZED LLE that describes frequency combs
in both passive systems and quantum cascade lasers near threshold



PHYSICAL REVIEW LETTERS 126, 173903 (2021)
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FIG. S2. Spectral shaping by external writing of temporal solitons. (a) Spatio-temporal plot showing the evolution
of the intracavity pattern in a ring QCL as multiple cavity solitons (CSs) are sequentially excited by the injection of pulses
at times t1, t2 and t3. (b) Excitation of a single CS with a wide pulse seed, approximately 20 times wider than the CS. (c)
Frequency comb spectra taken at the times t; and ¢3 in (a), corresponding to the excitation of a single CS and three equidistant

CSs, respectively.
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A QUANTUM EFFECT

The intensity difference between the two symmetrically emitted
beams in four-wave mixing exhibits fluctuations that lie below the
shot-noise level, which is a quantum effect (Castelli Lugiato, PRL
68,328 (1992)).

This effect has been experimentally confirmed (Boyer, Marino and
Lett, Phys.Rev.Lett.100, 143601 (2008)) .

See also a paper in which they measured the intensity difference
between two symmetrical modes in a Kerr frequency comb (Dutt,
Luke, Manipatruni, Gaeta and Lipson, Phys.Rev.Appl. 3, 044005
(2015)) - These authors called this effect “on-chip squeezing”.



I1) Quantum correlated states of light

Example: twin photons generated in a crystal with nonlinear optical properties

Conservation of energy W, = W +@)

Conservation of momentum kp =k *+ K \k*

i

The two- emitted photons are quantum correlated: by measuring energy and momentum of
the signal photon one can infer energy and momentum of the idler photon even without
measuring them.

42



Position-momentum entanglement of twin photons

SIGNAL

Momentum correlation : direction of
propagation of photon 1 determined from a
measurement of the direction of propagation
of photon 2

Position correlation: position x of photon 1
determined from a measurement of the
position of the photon 2

Simultaneous presence of correlation in both position and momentum of the

two photons— Entangled (nonseparable) state, similar to the original EPR
(Einstein-Podolsky Rosen , 1935) state.

Exp. test: Howell, Bennink, Bentley and Boyd, PRL 92 210403, 2004;
Theory: Brambilla, Gatti, Bache, Lugiato Phys .Rev.A 69, 023802 (2004)




QUANTUM IMAGING

This field exploits the quantum nature of light and
the natural parallelism of optical signals to devise

novel technique for optical imaging and for parallel
information processing at the quantum level.

Gatti, Brambilla, Lugiato, Quantum Imaging,
Progress in Optics, Vol. 51, p.251, 2008




CONCLUSIONS

INTRINSIC CONNECTION BETWEEN THE LLE AND KERR FREQUENCY COMBS /
LEO, COHEN, KOCKAERT, GORZA, EMPLIT, HAELTERMAN,
Nature Photonics 4, 471 (2010)

LUGIATO, PRATI, GORODETSKY, KIPPENBERG,
Phil. Trans. Roy. Soc. A 376, 20180113 (2018)

THIS EXAMPLE SHOWS THAT SOMETIMES THE EVOLUTION IN SCIENCE IS NOT
LINEAR BUT COMPLEX. SCIENCE IS ESSENTIALLY A COLLECTIVE PROCESS.

THE CRITERION OF SIMPLICITY, FOLLOWED IN THE DERIVATION OF THE LLE,
TURNED OUT TO BE VISIONARY. THIS FACT IS QUITE INTERESTING.

KERR FREQUENCY COMBS IN QUANTUM CASCADE LASER AND THE LASER
COUNTERPART OF THE LLE.

UNIFIED TREATMENT OF KFC IN PASSIVE AND ACTIVE SYSTEMS: GENERALIZED
LLE

NOTEWORTHY EPR ASPECTS EMERGE IN OPTICAL PATTERN FORMATION
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Cooperative frequency locking and stationary spatial
structures in lasers

L. A. Lugiato and C. Oldano

Dipartimento di Fisica del Politecnico, 10129 Torino, Italy

L. M. Narducci

Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104

Received October 21, 1987; accepted January 14, 1988

We investigate the spontaneous emergence of transverse patterns in lasers by using both the standard two-level
model and the so-called cubic approximation, which is generally valid in the threshold regions. The stationary
intensity configurations fall into two distinct classes. The first includes solutions of the single-mode type with the
frequency and spatial structure of one of the transverse resonances. The solutions of the second group involve the
simultaneous oscillation of several cavity modes, operating in such a way as to produce a stationary intensity profile.
The stationary character of these multimode configurations emerges from the fact that the transverse modes of the
resonator lock onto a common frequency during the nonlinear transient. We call this phenomenon cooperative

frequency locking.

1. INTRODUCTION

The spontaneous formation of stationary spatial structures
in homogeneous systems has been the object of extensive
investigations in such fields as nonlinear chemical reactions
and developmental biology.!3 Here the instabilities that
are responsible for the emergence of spatial patterns arise
from a diffusive mechanism and are usually referred to as
Turing instabilities.*

Optical systems are much more widely known for their
propensity to produce temporal structures in the form of
spontaneous oscillations of the regular or chaotic type.56
Only recently has a Turing instability been discovered’ 10 in
an optical model. Here, the resulting stationary pattern is
produced by the interplay between diffraction and nonlinear
coupling and not by a diffusion process. The optical ar-
rangement found to produce these interesting new effects
can be described as follows. A passive medium is contained
in an optical ring or Fabry—Perot cavity fitted with an addi-
tional pair of lateral mirrors that act as a waveguide for the
radiation field. With an appropriate selection of the state of
polarization of the incident field, injected along the z direc-
tion. the electric field in the resonator acauires a uniform

nal mode and the nearest transverse resonances be of the
order of the cavity linewidth. This situation creates a com-
petition between transverse and longitudinal modes. The
end result is the loss of stability of the spatially homoge-
neous stationary solution. At the same time the input field
imposes its oscillation frequency on the competing modes, so
that the eventual stationary state displays no temporal in-
tensity modulation.

Our aim in this paper is twofold. First, we extend the
description of the spatial pattern formation to the case of an
active system, such as a homogeneously broadened laser
with detuning between the atomic transition frequency and
the longitudinal cavity modes. Second, we show that in the
case of the laser the occurrence of the spatial patterns is
accompanied by a new phenomenon, which we propose to
call cooperative frequency locking.

The novelty here resides in the fact that a typical laser
system operates either in a single or in a multimode configu-
ration and that in the multimode case the output intensity
undergoes oscillations caused by the interference among the
competing modes. The stationary spatial structure de-
scribed in this paper corresponds to a different type of multi-
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