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The talk is focused on the equation (LLE)

L.A. Lugiato and R. Lefever, "Spatial dissipative structures in
passive optical systems", Phys. Rev. Lett. 58, 2209 (1987).

• Special issue on "Theory and Applications of the LLE", European Physical Journal D 
(2017).

• L.A. Lugiato, F. Prati and M. Brambilla, "Nonlinear Optical systems", Cambridge University 
Press, 2015, Ch.28.

• L.A. Lugiato, F. Prati, M. Gorodetsky and T. Kippenberg, "From the LLE to microresonator 
based soliton Kerr frequency combs", Phyl. Trans. Roy. Soc. A 376, 20180113 (2018), in 
the special issue on "Dissipative Structures in Matter out of equilibrium, from Chemistry,  
Photonics and Biology", in honour of Ilya Progogine 
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PARADIGMATIC MODEL FOR  NONLINEAR 
CHEMICAL REACTIONS: THE "BRUSSELATOR"

(I Prigogine and R. Lefever, J. Chem. Phys. 48, 1695 (1968))
TWO EQUATIONS:

X,Y = normalized concentration of reactants
normalized space-time coordinates

D1, D2 = diffusion coefficients
y

x

z

top view side view

large aspect
ratio system

A,B = parameters

Turing instability
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IN THE CASE OF OPTICS, THE ROLE OF DIFFUSION (COUPLING THE 
SPATIAL POINTS (x,y)) IS PLAYED BY DIFFRACTION.

However, the typical configuration of optical systems appears at first
sight the contrary of that of a large aspect ratio system, because
- Laser beams are usually well focused and therefore narrow
- In the description of laser beams, propagation in the longitudinal
direction z is important, therefore in general the coordinate z cannot
be ignored.



The first point is not a difficulty, because one can consider broad
section laser beams. The second point is, instead, a major difficulty
in view of the goal of constructing a model with the same level of
simplicity as the Brusselator. As a matter of fact, the models initially
used to describe transverse optical patterns (e.g. Moloney and Gibbs,
Phys.Rev. Lett. 48, 1607 (1982)) were substantially more complicated.

However, previous work on the analysis of nonlinear optical cavities
neglecting transverse effects (i.e. neglecting diffraction) had shown 
that there are conditions in which the electric field envelope is 
basically uniform along the cavity, so that the variation of E along z
can be neglected in the stationary state, which allows to get rid of the 
variable z.  Such conditions are defined by the "high-Q limit" (also 
called "mean field limit" or "uniform field limit" in the literature) 
introduced in Bonifacio and Lugiato, Nuovo Cimento 21, 505 (1978).



Qualitatively, the high-Q limit prescribes that:
1) The medium is located into a cavity with mirrors of low transmission

2) In a single pass through the medium, the field envelope undergoes a small 
variation. There are two possibilities: i) the medium is thin

ii) the nonlinearity is weak

Combining points 1) and 2) one has that, since the field envelope goes 
through the medium several times before going out of the cavity because of 
the small transmissivity, it undergoes a significant variation in time.
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CHOICE OF THE NONLINEARITY

Quadratic nonlinearities are not appropriate, because they involve
two envelopes, one for the fundamental and one for the harmonic.
The simplest choice is that of a cubic nonlinearity, i.e. the
Kerr non-linearity proportional to

The aim is to construct a model in which the only variable is the field
envelope E, which is complex, so that the model involves two equations
like the Brusselator.
Hence the model must not involve equations for material variables.
The choice of the nonlinearity follows a criterium of simplicity .

In conclusion, the model includes the nonlinear term, the diffraction
term and three terms which arise from the presence of the cavity



1 = Nonlinearity  (self-focusing)
2 = Diffraction
3 = F = stationary, uniform, monochromatic input field

2
3 4 5

4 = Field damping with damping rate 
T= mirror transmissivity, ring cavity length

5 = Cavity detuning
wc = cavity frequency nearest to w0

wavelength

F and E are appropriately normalized to reduce parameters to the minimum

1



An advantage with respect to the Brusselator is that the Kerr medium
model is realistic, whereas a realistic model for nonlinear chemical
reactions involves many more than two equations (see Nicolis, Intro-
duction to nonlinear science, Cambridge University Press, 1995).

HOMOGENEOUS STATIONARY SOLUTIONS
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The linear stability analysis of the homogeneous stationary solutions  showed 
the existence of a spatial modulational instability. An analytical calculation 
performed in 1D demonstrated that the pattern which develops beyond the 
instability threshold is stable under appropriate parametric conditions.

𝐹!=4

OPTICAL BISTABILITY
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Due to the rotational symmetry any rotated version of the figure is possible.

1D case (y only)

A remark of paramount importance is that the two photons, emitted in tilted directions, are in a 
state of quantum entanglement (they are entangled in energy and momentum). This fact is 
fundamental for the quantum aspects of optical patterns and, more in general, for the field 
of quantum imaging (see Gatti, E. Brambilla, Lugiato, in Progress in Optics Vol LI)
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Turing pattern



2D case (x,y) Þ roll patterns

However, in 2D the roll pattern is destabilized

A second four-wave mixing process creates two 
additional photons (2 and 6) from 0 and 1, and 
the pair of 3 and 5 from 0 and 4, which gives a 
hexagonal structure.

D. Gomila and P. Colet, Phys. Rev. E 76, 16217 (2007) analyzed the hexagonal patterns which 
arise in the model.
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Highly correlated configurations (global structures) or independent, isolated
intensity peaks (localized structures) appear in the transverse field profile.

Global and localized structures in optical systems

Experiments (Muenster university)

(a) Localized structures (M. Tlidi, P. Mandel and R. Lefever, Phys. Rev. Lett. 73, 64 (1994))
(b) global structures in sodium vapour; (c) global structures in LCV.

(a) (b) (c)

Firth, Harkness, Lord, McSloy, Gomila, Colet, J. Opt. Soc. Am. B 19,747 (2002)

Kerr cavity soliton

Scroggie, Firth, McDonald, Tlidi, Lefever, Lugiato, Chaos, Solitons and Fractals 4, 1323 (1994)
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THE TEMPORAL/LONGITUDINAL VERSION OF THE LLE

(M. Haelterman, S. Trillo, S. Wabnitz, Opt. Commun. 91, 401 (1992))
They were inspired by the analogy between two kinds of Hamiltonian
solitons:
•Temporal solitons, described by a nonlinear Schroedinger equation

with frequency (chromatic) dispersion
•Spatial solitons, described by a nonlinear Schroedinger equation

with diffraction (transverse Laplacian)
and extended this analogy to the dissipative case of an optical cavity

They considered a nonlinear fiber
loop with an input/output mirror.
In the practical realization the
mirror is replaced by input and
output fiber couplers
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SOLITONS IN PROPAGATION PROBLEMS

Temporal Solitons: no dispersion broadening
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Solitons are localized waves that propagate
(in nonlinear media) without change of form

Spatial Solitons: no diffraction broadening



HTW arrived at the equation

(*)

where

Once Eq. (*) has been solved with periodic boundary condition in z, in the 
solution                    must be replaced by              , which means that 
the spatial pattern rotates along the cavity with the group velocity vg.

Eq. (*) is equivalent to the LLE in 1D. Instead of the transverse variables x and y,
there is the longitudinal variable z.
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TW O REM ARKS

1) A model, equivalent to the temporal/longitudinal version of the LLE introduced
by HWT, was derived from the Maxwell-Bloch equations in

BRAMBILLA, CASTELLI, GATTI, LUGIATO, PRATI in SUSSP Proceedings 41, 115 (1993)

The complete derivation is found in  SAME AUTHORS, Eur. Phys. J. D 71, 84 (2017)

2) The pattern forming instability of the temporal/longitudinal LLE is a special case of the
MULTIMODE INSTABILITY OF OPTICAL BISTABILITY

(BONIFACIO, LUGIATO, Lett. Nuovo Cimento 21, 510 (1978)
BONIFACIO, GRONCHI, LUGIATO, Opt. Commun. 30, 129 (1979) )



TEMPORAL/LONGITUDINAL KERR CAVITY SOLITONS

•A temporal cavity soliton is a 
narrow  pulse that circulates 
indefinitely along the fiber cavity 
without deformations,  apart from 
fluctuations, with a period equal 
to the cavity roundtrip time

•It sits over the pedestal of a stable uniform stationary solution
•It is excited by injecting into the cavity an address pulse that adds to

the driving field

First experimental observation 
Leo, Coen, Kockaert, Gorza, 
Emplit, and Haelterman, 
Nature Photonics 4, 471 (2010)

380 m silica optical fiber
CW driving field, 1551 nm
cavity roundtrip time 1.85 µs
cavity soliton width ~ 4 ps
anomalous dispersion
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In the spectral domain the periodical train of pulses which arises from a 
Turing pattern corresponds to a comb of frequencies

Cornerstone experiment: 
Del’Haye, Schliesser, Arcizet, Wilken, Holzwarth, Kippenberg,
Nature 450, 1214 (2007) in a high-Q microresonator with a Kerr medium

BROADBAND KERR FREQUENCY COMBS



THE HIGH-Q LIMIT BECOMES REALITY

* D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala. Nature 421, 925-928 (2003).
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Ultra high quality factor microresonators



Discovery of microresonator frequency combs

Del Haye,Schliesser,Wilkins, Holzwarth,Kippenberg, Nature, 2007
EU & US Patent application “Optical Comb Generator using 
Microresonators”
TJ Kippenberg, et al., Science 2011

Image credit: S. Cundiff News&Views, Nature, Dec. 20, 2007



Microresonator based frequency combs

Hz

1 mm



Dissipative Kerr solitons

30

~ 100 nm

sech2

Adapted from: T. Herr et al., Nat. Photonics, 2013.

Turing patterns

Solitons
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Kerr frequency combs were discovered without being aware of the LLE.

The connection was pointed out later

- MATSKO, SAVCHENKOV, LIANG, ILCHENKO, SEIDEL, MALEKI, Opt. Lett. 36, 

2845 (2011)

- CHEMBO, MENYUK, Phys. Rev. A 87, 053852 (2013)

- HERR, BRASCH, JOST, WANG, KONDRATIEV, GORODETSKY, KIPPENBERG,

Nat. Photon. 2013, 343 

- COEN, RANDLE, SYLVESTRE, ERKINTALO, Opt. Lett. 38, 37 (2013)

CONNECTION BETWEEN THE LLE AND KERR FREQUENCY COMBS



Courtesy Y.K. Chembo



APPLICATIONS
Investigations on Kerr fequency combs have been applied to numerous areas, 
including

- coherent telecommunications
- spectroscopy
- atomic clocks
- laser ranging
- astrophysical spectrometer calibration

• See e.g. these reviews

- Kippenberg, Holtzwarth, Diddams, Microresonator-based optical frequency combs, 

Science 332, 555 (2011)

- Chembo, Kerr optical frequancy combs: theory, applications and perspectives, 

Nanophotonics 5, 214 (2016)

• The LLE has been generalized to the case of Fabry-Perot cavity in
Cole, Gatti, Papp, Prati, Lugiato, Phys, Rev. A 98, 013831 (2018)
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In their paper “Frequency combs induced by phase turbulence”, 
Nature 582, 560 (2020), Piccardo, Capasso et al. derive a complex 
Ginzburg-Landau equation (CGLE) for the ring quantum cascade laser 
near threshold

This equation has basically the same form of an equation formulated by

Lugiato, Oldano, Narducci,  J. Opt. Soc. Am. B 5, 879 (1988).

as the laser counterpart of the LLE, formulated for optical bistability.

As in the original LLE, x is a transverse variable. Therefore equation (*)

plays, with respect to the quantum cascade laser, a role analogous to that of

the LLE in fiber cavities and in microcavities.

Therefore the LLE works for both microresonators without population

inversion and for ring quantum cascade lasers near threshold.

(*)



Formulation of a GENERALIZED LLE that describes frequency combs 
in both passive systems and quantum cascade lasers near threshold
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A QUANTUM EFFECT

The intensity difference between the two symmetrically emitted 
beams in four-wave mixing exhibits fluctuations that lie  below the 
shot-noise level, which is a quantum effect  (Castelli Lugiato, PRL 
68,328 (1992)).

This effect has been experimentally confirmed (Boyer, Marino and 
Lett,  Phys.Rev.Lett.100, 143601 (2008)) . 

See also a paper in which they measured the intensity difference 
between two symmetrical modes in a Kerr frequency comb (Dutt, 
Luke, Manipatruni, Gaeta and Lipson, Phys.Rev.Appl. 3, 044005 
(2015))  - These authors called this effect    “on-chip squeezing”.
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II) Quantum correlated states of light

Example: twin photons generated in a crystal with nonlinear optical properties

laser cristallo

The two- emitted photons are quantum correlated: by measuring energy and momentum of 
the signal photon one can infer energy and momentum of the idler photon even without 
measuring them.
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Position-momentum entanglement of twin photons

cr
is

ta
llo
z

IDLERSIGNAL

Simultaneous presence of  correlation in both position and momentum of the 
two photons→ Entangled (nonseparable) state, similar to  the original EPR 
(Einstein-Podolsky Rosen , 1935) state.
Exp. test: Howell, Bennink, Bentley and Boyd, PRL 92 210403, 2004;
Theory: Brambilla, Gatti, Bache, Lugiato Phys .Rev.A 69, 023802 (2004)

Position correlation: position x of photon  1 
determined from a measurement of the 
position of the photon 2

Momentum correlation : direction of 
propagation of photon 1 determined from a 
measurement of the direction of propagation 
of photon 2

POMPA @352 nm

1 2

1

2



QUANTUM IMAGING

Gatti, Brambilla, Lugiato, Quantum Imaging, 
Progress in Optics, Vol. 51, p.251, 2008

This field exploits the quantum nature of light and 
the natural parallelism of optical signals to devise 
novel technique for optical imaging and for parallel 
information processing at the quantum level.



CONCLUSIONS

• INTRINSIC CONNECTION BETWEEN THE LLE AND KERR FREQUENCY COMBS / 
LEO, COHEN, KOCKAERT, GORZA, EMPLIT, HAELTERMAN,  
Nature Photonics 4, 471 (2010) 
LUGIATO, PRATI, GORODETSKY, KIPPENBERG, 
Phil. Trans. Roy. Soc. A 376, 20180113 (2018)

• THIS EXAMPLE SHOWS THAT SOMETIMES THE EVOLUTION IN SCIENCE IS  NOT 
LINEAR BUT COMPLEX.  SCIENCE IS ESSENTIALLY A COLLECTIVE PROCESS.

• THE CRITERION OF SIMPLICITY, FOLLOWED IN THE DERIVATION OF THE LLE, 
TURNED OUT TO BE VISIONARY.  THIS FACT IS QUITE INTERESTING.

• KERR FREQUENCY COMBS IN QUANTUM CASCADE LASER AND THE LASER 
COUNTERPART OF THE LLE.

• UNIFIED TREATMENT OF KFC IN PASSIVE AND ACTIVE SYSTEMS: GENERALIZED         
LLE

• NOTEWORTHY EPR ASPECTS EMERGE IN OPTICAL PATTERN FORMATION





Courtesy F. Capasso and M. Piccardo



Conference "Microresonator frequency 
combs, Fundamentals and applications"

6-8 April 2020, Bath, UK

!"#$#%&'%!"$#()*
!"#$%&'#()*+%,,-."'/0&#12*3454*6.(1,78

Thanks are due to Enrico Brambilla, Alessandra Gatti, Franco Prati


