(Quantum) Mixtures @ Synthetic Quantum Systems/Heidelberg University

SynQS Markus Oberthaler

taken by Lisi Niesnei 📀 REUTERS

Mixtures

phase separation - immiscible

coexistence - miscible

Coherent Mixtures

phase separation - immiscible

coexistence - miscible

Coherent mixtures with increasing complexity

pseudo spin ½

one dimensional

miscible to immiscible transition via linear coupling ,critical' scaling after a quench towards a quantum critical point

quantum features in zero dimensional situation (no motion) introduce collective spin dynamics squeezing and quantum bifurcation

spin 1

non-local entanglement EPR correlation from 0d to 1d

one dimensional POVM readout universal dynamics topological excitations such as solitons

Vacuum since 2000, with one day break

Experimental details

The system Two mixtures with special properties |2 > |2 > 1> 1> magic field: 3.23 G Feshbach resonance: 9.09 G but 20mG width 2000 Fotal atom number (x1000) 240 1000 -4470 200 -4480 (ZH) -1000 -2000 -3000 -4490 160 -4500 3.2 3.4 120 80 -4000 9.00 9.05 9.10 9.15 9.20 9.25 9.30 Magnetic field B(G) -5000 1 2 3 4 5 6 0 PRL 92, 160406 (2004) Magnetic Field (Gauss) PRA 66, 053616 (2002) PRA 69, 032705 (2004)

$$i\hbar\frac{\partial}{\partial t}\psi_2 = \left[-\frac{\hbar^2}{2m}\nabla^2 + V + g_{22}|\psi_2|^2 + g_{12}|\psi_1|^2\right]\psi_2$$

VOLUME 81, NUMBER 26 PHYSICAL REVIEW LETTERS

28 DECEMBER 1998

Phase Separation of Bose-Einstein Condensates

E. Timmermans*

Institute for Atomic and Molecular Physics, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138 (Received 26 August 1997; revised manuscript received 10 September 1998)

$$i\hbar\frac{\partial}{\partial t}\psi_{1} = \left[-\frac{\hbar^{2}}{2m}\nabla^{2} + V + g_{11}|\psi_{1}|^{2} + g_{12}|\psi_{2}|^{2}\right]\psi_{1}$$
$$i\hbar\frac{\partial}{\partial t}\psi_{2} = \left[-\frac{\hbar^{2}}{2m}\nabla^{2} + V + g_{22}|\psi_{2}|^{2} + g_{12}|\psi_{1}|^{2}\right]\psi_{2}$$

time averaged experiment – stationary theory solution --

Losses are well understood and have to be taken into account.

Experimental details

Is a magnetic field stability @ 9.1G an issue for a standard setup?

4 mG/V

Ref 2

-10..10V 20 bit

Filter

1 G/V

....................................

102.3 steps/G

-)

Ref 1

0..10V

10 bit

x250

Temperature stabilized

Experimental details

Is a magnetic field stability @ 9.1G an issue for a standard setup?

NO

Limited by temperature dependence of flux-gate sensor: 300µG = 75mK change

Rubidium BEC

F=2

x (µm)

Rubidium BEC

What happens if linear coupling is added?

F=2

$$\hat{H}_{\rm cpl} = -\frac{1}{2} \int \mathrm{d}x \, \left[\hbar \tilde{\Omega} \hat{\Psi}_1^{\dagger} \hat{\Psi}_2 + \hbar \tilde{\Omega}^* \hat{\Psi}_2^{\dagger} \hat{\Psi}_1 \right] + \frac{1}{2} \hbar \delta \int \mathrm{d}x \, \left[\hat{\Psi}_2^{\dagger} \hat{\Psi}_2 - \hat{\Psi}_1^{\dagger} \hat{\Psi}_1 \right]$$

Bogoliubov theory for mutually coherent condensates Paolo Tommasini et al. PRA 67, 023606 (2003) A study of coherently coupled two-component Bose-Einstein condensates M. Abad and A. Recati, Eur. Phys. J D 67, 148 (2013)

E. Nicklas PRL 107, 193001, 2001

$$\begin{split} -\frac{1}{2}\hbar \begin{pmatrix} \delta & \tilde{\Omega} \\ \tilde{\Omega}^* & -\delta \end{pmatrix} &= -\frac{1}{2}\hbar \begin{pmatrix} \delta & \Omega e^{i\varphi} \\ \Omega e^{-i\varphi} & -\delta \end{pmatrix} \\ \hline \begin{bmatrix} \text{stepson stepson stepso$$

$$\langle t(t) \rangle = \cos(\Omega/2t)|1\rangle + \sin(\Omega/2t)|2\rangle$$

= $\frac{1}{\sqrt{2}} \left(e^{-i\Omega/2t} |+\rangle + e^{+i\Omega/2t} |-\rangle \right)$

Dressed State Density

Dressed states reconstructed: miscibility <-> immiscibility

θ

| heta, arphi
angle

PRL 107, 193001 (2011)

PHYSICAL REVIEW A 68, 053607 (2003)

 Ω is the dominating energy scale

Dynamic stability of dressed condensate mixtures

Stewart D. Jenkins^{*,‡} and T. A. B. Kennedy^{†,‡} School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA (Received 10 July 2003; published 17 November 2003)

See also: C.P. Search, P.R. Berman PRA 63, 043612 (2001)

$$a_{++} = a_{--} = \frac{1}{4}(a_{11} + a_{22} + 2a_{12})$$
$$a_{+-} = \frac{1}{2}(a_{11} + a_{22})$$

Miscibility of dressed states:

 $a_{+-}^2 < a_{++}a_{--}$

implies immiscibility of bare states $a_{11} \sim a_{22}$:

$$a_{12}^2 > a_{11}a_{22}$$

$\langle J_z(x) J_z(x') \rangle = \langle \Delta n(x) \Delta n(x') \rangle$

with 1 μ m spatial resolution !!! ~5 μ m spin healing length for Ω =0

Scaling of correlation functions PRL 115, 245301 (2015)

Bogoliubov pediction by I. Bouchoule

Markus Oberthaler

y [µm]

y [µm]

SUMMARY

Ultracold gas systems simulate classical non-linear coupled equations with high precision

Two component interacting gases + linear coupling additional experimentally accessible controll

Many new developments:

Trento Group – Lectures by Giacomo Lamporesi Bourdel Group – Poster 17, tomorrow – Alfred Hammond Tarruell Group – Poster 9, yesterday – Craig Chisholm

SUMMARY

Ultracold gas systems simulate classical non-linear coupled equations with high precision

Two component interacting gases + linear coupling additional experimentally accessible controll

Many new developments:

Trento Group – Lectures by Giacomo Lamporesi Bourdel Group – Poster 17, tomorrow – Alfred Hammond Tarruell Group – Poster 9, yesterday – Craig Chisholm

$J_x = 2\rho^{-1}\sqrt{\rho_{\downarrow}\rho_{\uparrow}}\cos\varphi$ $J_y = 2\rho^{-1}\sqrt{\rho_{\downarrow}\rho_{\uparrow}}\sin\varphi$ $J_z = \rho^{-1}(\rho_{\downarrow} - \rho_{\uparrow})$

 $\begin{aligned} \varphi &= \varphi_{\downarrow} - \varphi_{\uparrow} \\ \phi_j &= \sqrt{\rho_j} \exp\left(\mathrm{i}\varphi_j\right) \end{aligned}$

Ginzburg criterium

$$H_{0} = \sum_{i=\downarrow,\uparrow} \int dy \, \Phi_{j}^{\dagger} \Big[-\frac{\hbar^{2}}{2m} \partial_{y}^{2} + V(y) \Big] \Phi_{j},$$

$$H_{cpl} = \frac{\hbar}{2} \int dy \Big[\Omega \Big(\Phi_{\downarrow}^{\dagger} \Phi_{\uparrow} + h.c. \Big) + \delta \Big(\Phi_{\downarrow}^{\dagger} \Phi_{\downarrow} - \Phi_{\uparrow}^{\dagger} \Phi_{\uparrow} \Big) \Big],$$

$$H_{int} = \frac{1}{2} \sum_{i,j=\downarrow,\uparrow} g_{ij} \int dy \, \Phi_{i}^{\dagger} \Phi_{i} \Phi_{j}^{\dagger} \Phi_{j}.$$

Rewritten in spin operators

$$H = \frac{1}{2} \int dy \left\{ m^{-1} (\partial_y \sqrt{\rho})^2 + \frac{\rho}{4m} |\partial_y \mathbf{J}|^2 + \rho (V + m v_{\text{eff}}^2) + g \rho^2 + \frac{g \rho^2}{2} (\alpha - 1) \left[1 - (J_z)^2 \right] + \Omega \rho J_x + \delta \rho J_z \right\}.$$

Assuming constant density

$$\mathcal{H} = \rho \left[|\partial_y \mathbf{J}|^2 / 4 + v_{\text{eff}}^2 + \Omega J_x - \Omega_c J_z^2 / 2 \right] / 2$$

Ginzburg criterium

Figure III.6: The figure illustrates the energetic configuration before and after the quench at the example of a quench to $\varepsilon = 0.001$, which leads to a thermal post-quench quasi-particle occupation. The infrared parts of the pre-quench energy spectrum (dashed black line), \mathcal{E}_i , which is identical to the pre-quench vacuum energy spectrum, the post-quench energy spectrum (solid black line), \mathcal{E}_i , the post-quench vacuum energy spectrum (solid green line), and, finally, the resulting mode temperatures (solid blue line). Details are discussed in the main text.

Finite time quenches

$$\xi(\hat{t}) = \xi_0 (\tau_Q / \tau_0)^{\nu/(1 + \nu z)}$$

$$\tau_Q = 1ms$$

$$\tau_Q = 5ms$$

$$\tau_Q = 10ms$$

$$\tau_Q = 30ms$$