Quantum Mixtures @ Synthetic Quantum Systems/Heidelberg University

SynQS Markus Oberthaler

taken by Lisi Niesnei 🕐 REUTERS

Coherent Quantum Mixtures

phase separation - immiscible

coexistence - miscible

Coherent mixtures with increasing complexity

pseudo spin ¹/₂

one dimensional

miscible to immiscible transition via linear coupling critical scaling after a quench towards a quantum critical point

quantum features in zero dimensional situation (no motion) introduce collective spin dynamics squeezing and quantum bifurcation

spin 1

non-local entanglement EPR correlation from 0d to 1d

one dimensional POVM readout universal dynamics topological excitations such as solitons

Genuine quantum feature: Entanglement

k

Indistinguishable uncorrelated bosons

Ν $J_{x,y,z} = \sum_{i} S_{x,y,z}^{(i)}$

Schwinger – collective spin:

 $\sigma^{(i)} = \frac{1}{2}$

 $\Delta \sigma_{\perp}^{(i)} = \frac{1}{2}$

Suppression of fluctuations as witness for entanglement

separable density matrix

Vacuum since 2000, with one day break

Rubidium BEC

1D many mode situation \rightarrow 0D single mode situation

Experimental details

1D many mode situation \rightarrow many 0D realizations

Experimental details

 $\Delta J_{\perp} = \sqrt{N/2}$

single mode/ 0d approximation without coherent coupling

Rubidium BEC

F=1

$$F=2 |b\rangle - -$$

 $|a\rangle$

 $\mathcal{H}=\mathcal{H}_a+\mathcal{H}_b+\mathcal{H}_{ab}$

$$\begin{aligned} \mathcal{H}_{a} &= \int \mathrm{d}^{3}\mathbf{x} \, \hat{\psi_{a}}^{\dagger}(\mathbf{x}) \left(-\frac{\hbar^{2}}{2m} \nabla^{2} + V_{a}(\mathbf{x}) + \frac{4\pi a_{aa}}{2m} \hat{\psi}_{a}^{\dagger}(\mathbf{x}) \hat{\psi}_{a}(\mathbf{x}) \right) \hat{\psi}_{a}(\mathbf{x}) \\ \mathcal{H}_{ab} &= \frac{4\pi a_{ab}}{m} \int \mathrm{d}^{3}\mathbf{x} \, \hat{\psi}_{a}^{\dagger}(\mathbf{x}) \hat{\psi}_{b}^{\dagger}(\mathbf{x}) \hat{\psi}_{a}(\mathbf{x}) \hat{\psi}_{b}(\mathbf{x}). \end{aligned}$$

Od assumption

$$\begin{split} \hat{\psi}_{b}^{\dagger}(\mathbf{x}) &= \hat{a}_{b}^{\dagger}\phi_{b}(\mathbf{x}) \\ \hat{\psi}_{a}^{\dagger}(\mathbf{x}) &= \hat{a}_{a}^{\dagger}\phi_{a}(\mathbf{x}) \\ & \left[\hat{a}_{i}, \hat{a}_{j}^{\dagger}\right] &= \delta_{ij} \end{split} \qquad \begin{aligned} \mathcal{H}_{a} + \mathcal{H}_{b} &= \frac{1}{2}\int \mathrm{d}^{3}\mathbf{x} \left[\phi_{a}(\mathbf{x})\omega_{a}\phi_{a}(\mathbf{x})\hat{a}_{a}^{\dagger}\hat{a}_{a} + g_{aa}|\phi_{a}(\mathbf{x})|^{4}\hat{a}_{a}^{\dagger}\hat{a}_{a}^{\dagger}\hat{a}_{a}\hat{a}_{a} \\ &+ \phi_{b}(\mathbf{x})\omega_{b}\phi_{b}(\mathbf{x})\hat{a}_{b}^{\dagger}\hat{a}_{b} + g_{bb}|\phi_{b}(\mathbf{x})|^{4}\hat{a}_{b}^{\dagger}\hat{a}_{b}^{\dagger}\hat{a}_{b}\hat{a}_{b}\right], \\ & \left[\hat{a}_{i}, \hat{a}_{j}^{\dagger}\right] &= \delta_{ij} \end{aligned} \qquad \begin{aligned} \mathcal{H}_{ab} &= \int \mathrm{d}^{3}\mathbf{x} \, g_{ab}|\phi_{a}(\mathbf{x})|^{2}|\phi_{b}(\mathbf{x})|^{2} \cdot \hat{a}_{a}^{\dagger}\hat{a}_{b}^{\dagger}\hat{a}_{a}\hat{a}_{b} \end{aligned}$$

$$\mathcal{H} = \tilde{\omega}_a \hat{a}_a^{\dagger} \hat{a}_a + \tilde{\omega}_b \hat{a}_b^{\dagger} \hat{a}_b + \frac{\chi_{aa}}{2} \hat{a}_a^{\dagger} \hat{a}_a^{\dagger} \hat{a}_a \hat{a}_a \hat{a}_a + \frac{\chi_{bb}}{2} \hat{a}_b^{\dagger} \hat{a}_b^{\dagger} \hat{a}_b \hat{a}_b \hat{a}_b + \chi_{ab} \hat{a}_a^{\dagger} \hat{a}_b^{\dagger} \hat{a}_a \hat{a}_b$$

$$\mathcal{H}_{cpl} = -\frac{\hbar\Omega_r}{2} \int d^3 \mathbf{x} \left(\hat{\psi}_a(\mathbf{x}) \hat{\psi}_b^{\dagger}(\mathbf{x}) e^{-i(\delta_c t + \varphi_0)} + \text{h.c.} \right) \Box \mathcal{H}_{cpl} = -\frac{\hbar\tilde{\Omega}}{2} \left(\hat{a}_a \hat{a}_b^{\dagger} e^{-i(\delta_c t + \varphi_0)} + \text{h.c.} \right)$$
$$\tilde{\Omega} = \Omega_r \int d^3 \mathbf{x} \, \phi_a(\mathbf{x}) \phi_b(\mathbf{x})$$

Schwinger collective spins simplifies H significantly

$$J_{x,y,z} = \sum_{i}^{N} S_{x,y,z}^{(i)}$$

Schwinger – collective spin:

$$\hat{J}_x = \frac{1}{2} (\hat{a}_a^{\dagger} \hat{a}_b + \hat{a}_b^{\dagger} \hat{a}_a) \qquad \hat{J}_y = \frac{1}{2i} (\hat{a}_b^{\dagger} \hat{a}_a - \hat{a}_a^{\dagger} \hat{a}_b) \qquad \hat{J}_z = \frac{1}{2} (\hat{a}_b^{\dagger} \hat{a}_b - \hat{a}_a^{\dagger} \hat{a}_a)$$

$$\begin{bmatrix} \hat{J}_i, \, \hat{J}_j \end{bmatrix} = \mathbf{i} \epsilon_{ijk} \hat{J}_k.$$
$$[\hat{a}_i, \hat{a}_j^{\dagger}] = \delta_{ij}$$

Lipkin-Meshkov-Glick Hamiltonian Two mode Bose Hubbard Quantum dimer Fully connected transverse field Ising model

The Hamiltonian and the energy scales

Feshbach resonance -loss

Lipkin-Meshkov-Glick Hamiltonian Two mode Bose Hubbard Quantum dimer Fully connected transverse field Ising model

The Hamiltonian and the energy scales

$$[\Delta + (g_{11} - g_{22})N]\hat{J}_z$$

±1Hz

Magnetic field ± 100µG

Iotal atom number fluctuations

 $N = 400 \pm 40$

Imaging @ ±3atoms App. Phys. B 113, 69 (2013)

What has Trinitrotoluol (TNT) to do with quantum mixtures?

PRL 113, 103004 (2014); PRA 91, 013412 (2015)

Wolfgang Muessel

e.g. A. Micheli et al. Phys.Rev. A 67 , 013607 (2003)

generating non-classical states – Twist aNd Turn

What about the classical limit of complex order parameter ?

Dynamics PRL 105, 204101 (2010)

increasing interactions

Quantum bifurcation – quantum phase transition

Quantum bifurcation – quantum phase transition

, interesting' many particle states

squeezing \rightarrow non Gaussian state

, interesting' many particle states

squeezing 🔿 non Gaussian state

PHYSICAL REVIEW A 78, 023611 (2008)

Fock-space WKB method for the boson Josephson model describing a Bose-Einstein condensate trapped in a double-well potential

90000 BEC experiments !

postselected: 340 ± 10 atoms

experimentally reconstructed after 25ms with >100.000 BECs

SUMMARY

Ultracold coherent mixtures reveal quantum entanglement from squeezed to non-Guassian states

worth 100.000 BECs

Spinor Bose gases an ideal platform for quantum many body physics

REVIEWS OF MODERN PHYSICS, VOLUME 90, JULY-SEPTEMBER 2018

Quantum metrology with nonclassical states of atomic ensembles

Luca Pezzè and Augusto Smerzi QSTAR, INO-CNR and LENS, Largo Enrico Fermi 2, 50125 Firenze, Italy

Markus K. Oberthaler

Kirchhoff-Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany

Roman Schmied and Philipp Treutlein

Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland

