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Lecture 1

Quantum droplets  



  

n

GAS requires trapping or collapses

E /V

n

E /V

E /V=g2n
2/2

(JILA'95)

g2>0 g2<0



  

Dipolar and mixture droplets

(Cabrera et al '18)

Observation of mixture droplets (Barcelona, 
Florence) and heteronuclear droplets (Florence, 

Hong-Kong) 

``LHY'' gases (Aarhus)
BMF effects in driven mixtures (Palaiseau)

...lots of theory...

(Ferrier-Barbut et al '16)

Observation of dipolar droplets and their 
properties (Stuttgart, Innsbruck, Pisa)

coherent arrays of droplets = 1D supersolid 

2D supersolids

...lots of theory...

Regime of competing MF and BMF. We learned a lot about Bogoliubov theory and BMF effects!



  

E /V

n

n0

Liquid?



  

``New'' terminology:

liquid  ≠  fluid

saturation density

particle-emission threshold

surface tension

surface modes, etc.

E /V

n

n0

Liquid?



  

3-body   (α=3) Lee-Huang-Yang   (α=5/2)

Resonant (Efimov) 
3-body force
            (Bulgac'02)

Non-resonant 
3-body force 
          (DP'14)

• Beyond-mean-field QUANTUM MECHANISM!
                                                                (DP'15)

•

E /V ∝g2n
2/2+gαn

α /α!, α>2

E /V

n

n0

Liquid?



  

dilute liquid = stabilization against collapse at low densities    

E /V

n

n0

Liquid?

need two degrees of freedom:

1 soft, slow, “collapsing” + 1 stiff, fast, “stabilizing”



  

Quantum stabilization  



  

Classical Quantum

BEC analog:
Classical or mean-field limit = 

Gross-Pitaevskii equation

BEC analog:
Mean field + Gaussian fluctuations 

= GP+LHY

Classical vacuum
Bogoliubov vacuum



  

Classical Quantum

BEC analog:
collapse 

BEC analog:
collapse :(

Can there be a classically unstable system,
yet stable when quantum mechanics is “switched on” ?



  

Quantum stabilization idea

U (x , y )=−α x2
+
ω2(x)

2
y2

x

y

Stable for sufficiently fast growing    
     ω(x)

Classically unstable degree of 
freedom stabilized by quantum 
fluctuations in another degree of 
freedom!

BEC analog:

quantum droplet!  



  

LHY mechanism



  

For spinless BEC:

∝g2
5 /2n5 /2

E
Volume

=
g2n

2

2 (1+128
15 √ na

3

π +... )

Lee-Huang-Yang correction

LHY correction is UNIVERSAL (depends only on the scattering 
length) and QUANTUM (zero-point energy of Bogoliubov phonons)!

Observed in ultracold gases where the scattering 
length is tunable by using Feshbach resonances 
(Innsbruck, MIT, ENS, JILA, Rice)

Unfortunately, the effect is perturbative and the LHY 
term is smaller than the mean-field one!

Navon et al.'11



  

Bose-Bose mixture, mean field

Mean-field energy density:
EMF

Volume
=
g11n1

2+g22n2
2+2 g12 n1n2

2

g11>0, g22>0, and g12
2 <g11g22

mean-field stability

g12>√g11 g22

g12<−√g11g22

g12

collapse

phase separation

n1

n2

n1

n2

n1

n2



  

39K: |F=1,m
F
=0> and |F=1,m

F
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39K: |F=1,m
F
=0> and |F=1,m

F
=-1>

a
aBohr

B [G ]

a11

Data from A. Simoni

a22

a12

a12=−√a11a22



  

g12

δ g /g≪1

δ g /g≪1

g=√g11 g22

δ g=g12−√g11 g22

δ g=g12+√g11 g22

EMF+ELHY=
1
2
(n1n2) (g11 g12

g12 g22
) (n1

n2
)+ELHY∼gn+

2
±δ g n−

2
+

8

15π2 (g11n1+g22n2)
5/2

Bose-Bose mixture, mean field

n+

n−

n+

n−



  

g12

δ g /g≪1

δ g /g≪1

g=√g11 g22

δ g=g12−√g11 g22

δ g=g12+√g11 g22

EMF+ELHY=
1
2
(n1n2) (g11 g12

g12 g22
) (n1

n2
)+ELHY∼gn+

2
±δ g n−

2
+

8

15π2 (g11n1+g22n2)
5/2

Bose-Bose mixture, mean field + LHY

n+

n−

n+

n−

(Larsen'63)



  

Equilibrium with vacuum.              
                 Saturation density

Quantum droplet

The mean-field term “locks” the ratio

      

n2

n1

=√ g11

g22

δ g=g12+√g11 g22≪√g11g22=g

n

n0δ g<0 n0∝
1

a3 ( δ gg )
2

Note:

n+∝√g11n1−√g22n2≈0

E
volume

=δ gn2
+...(gn)5 /2

n−∝√g22n1+√g11n2∝n

n+

n−

δ g/g∼√na3μ0n



  

Modified Gross-
Pitaevskii equation 

cubic-quartic 
nonlinearities

Rescaling r⃗=ξ⃗̃r , t=τ t̃ , N=n ξ3 Ñ , where ξ∝1/√m∣δ g∣n , τ∝1/∣δ g∣n

Gross-Pitaevskii eq., droplet shape

i∂ t̃ ϕ=(−∇ ⃗̃r
2/2−3∣ϕ∣2+5∣ϕ∣3/2−μ̃)ϕ

Ñ=∫∣ϕ∣2d3 r̃

~N=18.65

~N=30

~N=500

~N=3000



  

Bogoliubov-de Gennes eqs., excitations

linearize i∂ t̃ ϕ=(−∇ ⃗̃r
2
/2−3∣ϕ∣2+5∣ϕ∣3/2−μ̃)ϕ with respect to small δϕ( t̃ , ⃗̃r )

ϕ( t̃ , ⃗̃r )=ϕ0(r̃)+δϕ( t̃ , ⃗̃r )

co
ntin

uum

disc
rete

Surface modes



  

Bogoliubov method



  

Bogoliubov theory

•Hamiltonian of the mixture:

•“Mean-field term” 
     “Quadratic Hamiltonian”



  

Bogoliubov theory

•Quadratic part:

•2 problems:
• 
•1) not so easy
• 
•2) the spectrum is gapped      

“Quadratic Hamiltonian” = “easy to diagonalize”



  

Bogoliubov theory

•Quadratic part:

•gap comes from this term. What is the problem?      

The problem is the canonical description where        are fixed. When we create 
an excited atom, we deplete the condensate, i.e., 

•becomes the Bogoliubov quadratic Hamiltonian:

•* the “gap” problem does not show up in the grand canonical description



  

Bogoliubov theory

•Diagonalization of the quadratic Hamiltonian (industrial)

symmetrize by using   
   

•In fact, we have to diagonalize



  

Bogoliubov theory

•Properties of                  :

•1) spectrum symmetric wrt 0

•2) left eigenvectors

•3) normalization

•eigenvectors of



  

Bogoliubov theory

•Back to

•Diag.

MF∝g n2 LHY∝(g n)5 /2

•no need to know eigenvectors!



  

Bogoliubov theory

•Bogoliubov spectra of individual components

•Diag.

•Assume short-range potentials and the ultracold regime, i.e., typical k is much smaller than the 
range of              in momentum space. Can we replace                             ? 

•Depends on the large-k behavior of this integral and on the space dimension!



  

Bogoliubov theory

•1D: converges, straightforward replacement,
•delta potential is well behaving in 1D

2D: logarithmic divergence, handle by 
introducing a momentum cutoff 

•3D: diverges, “easy” to handle (as it converges 
at low k)



  

Renormalization in 3D

•add here•subtract from here

•Interaction shift per pair =

•This perturbation theory cannot 
handle zero-range interactions

•
•                 is effective potential
•

•Characterized by the desired low-
energy scattering properties but 

suitable for perturbative expansion 

•Interaction range in 
momentum space ~1/R

e

Re

Re

Re



  

Renormalization in 3D

•add here•subtract from here

•Integral converges at ~healing momentum << 

•where



  

Renormalization in 3D

•where

•Change of variable k->t •removes internal square root 

•is a combination of elementary and elliptic functions 

•For                                we obtain  



  

3D liquid properties

n↑

n↑
(0)

Dilute liquid! √n a3∼∣δ g∣/g≪1



  

Summary

Instability in one degree of freedom (density) can be prevented by 
quantum fluctuations in other degree(s) of freedom (spin)

Quantum droplets: BMF physics is essential in spite of the weakly 
interacting regime, dilute liquid phase with controllable parameters

LHY (nonanalytic) scaling of the stabilizing energy ~n5/2 

Next lecture: other density scalings of the BMF term!

Next lecture: power of the Bogoliubov method



  

Lecture 2

Nonanalytic vs analytic beyond mean field

&

Three-body force



  

Dilute liquid phase

Need attractive mean-field (MF) and 
repulsive beyond-mean-field (BMF) terms

control parameter

MF

BMF

energy

MF and BMF compete if MF is fine-tuned!

α=3

EMF /V=g2n
2
/2<0

In the dilute regime 

EBMF /V ∝nα≠2
>0

n

n0

 

E
V

–  “3-body” mechanism (Bulgac'02)

α=5 /2 – “LHY” mechanism (DP'15)

Dilute liquid

E=EMF+EBMF

Interest in higher-order interactions 
near 2-body zero crossing



  

E
Volume

=
g2n

2

2
+

1
2
∑
k

[E(k )−k2/2−c2]=
g2n

2

2
+

8

15π2 c
5=

g2n
2

2 (1+128
15 √ na

3

π )

E(k)=√c2k2+k 4/ 4
c2=g2n

MF                  LHY/BMF

g2=4 π a

LHY correction is QUANTUM                                          and UNIVERSAL

k

c k

(depends only on the 
scattering length)

(~ zero-point energy of 
Bogoliubov vacuum)

∝n
5/ 2

Lee-Huang-Yang (LHY) correction

(Lee,Huang,&Yang'57)

Classical Quantum

ℏω/2

… but, unfortunately, VANISHES at the 2-body zero crossing!



  

E
Volume

=
g11 n1

2
+g22 n2

2
+2 g12n1n2

2
+

8

15π2 (c+
5 +c−

5 )

Two-component mixture  (                       )

E±(k )

k

c+k

c− k

Dipolar gas (             )

“stiff” direction
“soft” direction

“stiff” mode

“soft” mode

ELHY

Volume
=

8

15π2

m4

ℏ
3 〈 c

5( k̂ )〉k̂

(Larsen'63) (Lima&Pelster'11)

∝n
5/ 2

∝n
5/ 2

Problem solved for systems with more control parameters

a→a11 , a22 , a12 a→a, r∗

Dipolar length

Independent control over MF and BMF terms



  

Low-dimensional examples

E3D

Volume
=

1
2
∑

σ σ '
gσσ ' nσ nσ '+

8

15 π2∑±
c±

5
∼ δ gn2

+(gn)5/23D:

E2D

Surface
=

1
2
∑

σσ '
gσ σ 'nσnσ '+

1
8π
∑

±
c±

4 ln
c±

2 √e

κ
2 ∼ g2n2 ln

n
n0

2D:

gσσ '=2π/ ln (2 e−γ
/aσσ ' κ)≪1

E1D

Length
=

1
2
∑

σ σ '
gσσ 'nσnσ '−

2
3π
∑

±
c±

3
∼ δ gn2

−(gn)3/21D:

√n g3≪1

√g /n≪1 !

(DP, Astrakharchik'16)



  

E
Volume

=
Ṽ (0)n2

2
+

1
2∑k

[√k 4
/4+Ṽ (k )nk2

−k2
/2−Ṽ (k )n]

=
Ṽ (0)n2

2
+∑

k
(− n2 Ṽ 2

(k )

2k2
+
n3 Ṽ 3

(k )

k4
+...)

E(k)=√k 4/4+Ṽ (k)nk2

Ṽ (0)=0

k

Where does nonanalyticity come from?

r

V (r )

Fourier

k

Ṽ (k )

 Renormalization of two-body 
interaction

Effective three-body force? 
Analytic? ~n3

Not really. Integral is infrared 
divergent. Bogoliubov theory 
cuts it off at                 making it 
nonanalytic  

k∼√Ṽ (0)n

Analytic BMF (3-body): 

1) if 

2) if the spectrum is gapped 
(different Hamiltonian)



  

Driven mixture (Cappellaro et al'17, Lavoine et al'21)

ELHY=
8

15π2 c+
5 ∝n5/2 ELHY ≈ √Ωg2

2√2π
n2

2 +
3 g3

4√2π√Ω
n3

3 !+...
gn≪Ω

Effective three-body force 
third order in the interaction

k

c+k

k 2/2

E±(k )

k

k 2/2

E±(k )

RF Rabi frequency, 
or tunneling 

amplitude (bilayer, 
bitube geometry)Ω=0

Ω

Agreement with 3-body analysis (DP'14)

2-body renorm.

(Lavoine et al'21)

finite Ω

            is a new 
momentum scale which 
can cut off the infrared 
divergence instead of 

the healing momentum

√Ω



  

Appearance of effective three-body terms
also in the third order 

quasi-low-D 
confinement with 

frequencyω

k

k 2/2

En(k )

ω

Dimensional crossover Edler et al'17, Zin et al'18&'19, Ilg et al'18



  

Effective 3-body force (2nd order)

l0

Quasi-1D bosons H eff 1D=−
1
2∑i=1

N
∂

2

∂ xi
2+g2∑

i< j

δ( xi−x j)+g3 ∑
i< j<k

δ(xi−x j)δ(x j−x k)

(Muryshev et al'02)

g2=
2a
l0 (1+ Ca

√2 l0
+...) g3=−12 log( 4

3 ) a2

l0
2

(Olshanii'98)

Another example:

Higher-order interactions in the Bose-Hubbard model
(Li et al.'06, Tiesinga et al.'09,11, Hazzard&Mueller'10)

3-body term – second order in 
interaction and attractive 

~

g2/ ≫

~ ~

g~a3/2 ≫ g3 /2

E N =U2

N N−1
2 !

U3

N N−1N−2
3 !

U 4

N N−1N−2N−3
4 !

...



  

Three-body force:

Why interesting?

Is it second or third order?

Can Bogoliubov theory correctly handle it?



  

Why interesting?

Bosons + g
2
<0                        Collapse

Bosons + g
2
<0 + g

3
>0                       Free space → self-trapped droplet state Bulgac'02: 

                       

Increasing g
2
<0                     bosonic pairing Nozieres&Saint James'82

 Topological transition, not crossover! pairs repel because g
3
>0 

• Neglecting surface tension, flat density profile

• Including surface tension → surface modes

n=3∣g2∣/2 g3

      Radzihovsky et al., Romans et al., Lee&Lee'04

Pairing on a lattice with three-body constraint:

Daley et al.'09-, Ng&Yang'11, Bonnes&Wessel'12,...

 is necessary! = Pauli pressure in the BCS-BEC crossover!g3



  

Why interesting?

Mechanical stability for g
3
 > 0

Lu et al'15

2D dipoles

Rotonized superfluid & supersolid

Phase diagram



  

Dimensions of X-dimensional coupling constants

g2∝(ℏ
2/m)×lengthX−2

X-dimensional 2-body scattering 

g3∝(ℏ
2/m)×length2 X−2X-dimensional 3-body scattering 

X-dimensional 3-body scattering   =  (2X)-dimensional 2-body scattering

In particular,  

• 3D:

• 2D:

• 1D:

g3∝(ℏ
2/m)×length4

g3∝(ℏ
2/m)×length2

g3∝(ℏ
2/m)/ ln(k×length)= small parameter



  

Dimensions of X-dimensional coupling constants

g2∝(ℏ
2/m)×lengthX−2

X-dimensional 2-body scattering 

g3∝(ℏ
2/m)×length2 X−2X-dimensional 3-body scattering 

X-dimensional 3-body scattering   =  (2X)-dimensional 2-body scattering

In particular,  

• 3D:

• 2D:

• 1D:

g3∝(ℏ
2/m)×length4

g3∝(ℏ
2/m)×length2

g3∝(ℏ
2/m)/ ln(k×length)= small parameter



  

Three-body problem with a
2
 and a

3

[∂ ψ/∂n]=−2ψ/a2

x

y

θ=π/3

ρ→0
ψ∝ln

ρ

a3

y

√3
2
x

(−∂2/∂ x2−∂2/∂ y2−mE)ψ(ρ)=0

(Guijarro et al.'18, Nishida'18)



  

E
Volume

=
Ṽ (0)n2

2
+

1
2
∑
k

[√k 4
/4+Ṽ (k )nk2

−k2
/2−Ṽ (k )n]=

Ṽ (0)n2

2
+∑

k
(− n2Ṽ 2

(k )

2k2
+
n3 Ṽ 3

(k )

k4
+...)

E(k)=√k 4/4+Ṽ (k)nk2

Ṽ (0)=0

k

2-body interaction of zero mean

Converges since 

r

V (r )

Fourier

k

Ṽ (k )

g3
(3)
=6∑

k

Ṽ 3
(k )

k4

Ṽ (0)=0 c2∝Ṽ (0)=0

 Renormalization of two-body 
interaction

Effective three-body force 
third order in the interaction

``3-body'' 3rd order scaling 

Closed-form expression

Where could the 2nd order 3-body term come from?

Not sure if Bogoliubov handles it correctly



  

Hamiltonian:

Model

x

y

Quasi-low-D confinement Interaction 

x

y

Interaction matrix elements [assume                        ]

k

k

−k

η
ν
ζ

μ

V (r)=V (−r )

single-particle states in U( y ) 



  

1st quantization vs Bogoliubov perturbation theory

Landau & Lifshitz

B
og

ol
iu

bo
v

 MF

 2-body renormalization  3-body 2nd order attraction
Vanishes in pure dimensions!

〈 Ĥ 2∣Ĥ sp
−1∣Ĥ 2〉 g2

(2)
〈 Ĥ1∣Ĥ sp

−1∣Ĥ 1〉 g3
(2)

      also follows from GPE:g3
(2)



  

lθ

x

y

V 00
00
(k=0)=0

in “simple” cases

Quasi-2D dipoles is also a simple case: 

Fourier

V νμ
ηζ(k=0)=0

g3
(2)
=0V 00

00
(k=0)=0 and            simultaneously

V νμ
ηζ(k=0)=0

In these “simple” cases

MF ~ V 00
00
(k=0)∝a g3

(2)
=−6∑

ν

∣V ν0
00
(0)∣2

ϵν
∝−a2



  

Example is quasi-1D dipoles:

a=a∗

x

y

θ

only when           AND θ=0

V 00
00
(k=0)=0 a=a∗when         , but all  

Independent control of 2-body and 3-body interactions!

                                              

V 00
00
(k=0)=0

not valid in general

V νμ
ηζ(k=0)=0

V νμ
ηζ(k=0)=0



  

Example is quasi-1D dipoles:

a=a∗

g3
(2)
≤0

x

y

θ

only when           AND θ=0

V 00
00
(k=0)=0 a=a∗when         , but all  

Independent control of 2-body and 3-body interactions!

                                              … although 

V 00
00
(k=0)=0

not valid in general

V νμ
ηζ(k=0)=0

V νμ
ηζ(k=0)=0

control parameter

MF

BMF

energy



  

Hereafter assume                              

(holds for quasi-2D dipoles when             and for quasi-1D dipoles when              and            )a=a∗ θ=0a=a∗

V νμ
ηζ(k=0)=0

where

and

〈 Ĥ 2∣Ĥ sp
−1∣Ĥ 2∣Ĥ sp

−1∣Ĥ2〉

g3
(3)

is well described by Bogoliubov

〈 Ĥ2∣Ĥ sp
−1∣Ĥ 4∣Ĥ sp

−1∣Ĥ2〉

g2
(3)

is formally beyond Bogoliubov, as we 
need



  

Applications of                              

lθ

x

y

In both cases (if            ): 

repulsive 3rd order 3-body interaction for dipoles oriented along 
unconfined direction(s) !

Happens when the 2-body potential is attractive at long range 

θ=0

g3
(3)
=4.65(r∗/l)

3

r∗>0

g 3(3
)
in

 u
ni

ts
 o

f
r ∗3
/l



  

2-body tail – 3-body sign correspondence

r

V (r )

Fourier

k

V (k )

g3
(3)
=6∑

k

V 3
(k )

k4 >0

Attractive tail                           repulsive                          g3
(3)
>0

V (k )>0

For ``not very exotic'' 2-body potentials (double-Gaussian, Yukawa-plus-delta, quasi-low-D dipolar case) the rule is: 



  

2-body tail – 3-body sign correspondence

r

V (r )

Fourier

k

V (k )

g3
(3)
=6∑

k

V 3
(k )

k4 >0

Attractive tail                           repulsive                          g3
(3)
>0

r

V (r )

V (k )>0

For ``not very exotic'' 2-body potentials (double-Gaussian, Yukawa-plus-delta, quasi-low-D dipolar case) the rule is: 

 Counterexample: 



  

Summary

- Bogoliubov spectrum ↔ type of the LHY term

Phononic →nonanalytic LHY

Gapped or V(k=0)=0 → regular expansion in powers of density   

- Bogoliubov theory is a powerful three-body solver!

- Closed perturbative expressions:

-       is not captured by Bogoliubov!

- Applications to quasi-low-D dipolar bosons

g2
(3)

g3
(2)
=−6∑

ν

∣V ν0
00
(0)∣2

ϵν



  

Thank you for your attention!
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