Insulating phases in twisted bilayer graphene

N. Regnault

Princeton University

Quantum Fluids of Light and Matter July 2022

$$H = \begin{pmatrix} iv_F \left(\partial \cdot \sigma + \frac{\theta}{2} \partial \wedge \sigma \right) & T(\mathbf{r}) \\ T^{\dagger}(\mathbf{r}) & iv_F \left(\partial \cdot \sigma - \frac{\theta}{2} \partial \wedge \sigma \right) \end{pmatrix}$$

$$T(\mathbf{r}) = \sum_{j=1}^{3} T_j e^{i\mathbf{q}_j \cdot \mathbf{r}}$$

$$T_j = w_0 \sigma_0 + w_1 \left[\sigma_x \cos\left(\frac{2\pi(j-1)}{3}\right) + \sigma_y \sin\left(\frac{2\pi(j-1)}{3}\right) \right]$$

BM in momentum space

$$h_{\mathbf{Q},\mathbf{Q}'}\left(\mathbf{k}\right) = v_{\mathcal{F}}(\mathbf{k}-\mathbf{Q}) \cdot \sigma \delta_{\mathbf{Q},\mathbf{Q}'} - \lambda v_{\mathcal{F}} \frac{\theta}{2} \xi_{Q} \delta_{\mathbf{Q},\mathbf{Q}'}\left(\mathbf{k}-Q\right) \wedge \sigma + \sum_{j=1}^{3} T_{j} \delta_{\mathbf{Q},\mathbf{Q}'\pm\mathbf{q}_{j}}$$

TBG band structure: effect of θ

TBG band structure: effect of θ

TBG band structure: effect of w_0, w_1

3- TBG: Symmetry

But more oversent symmetries can be defined.
It and any "particle - left" transformation
$$P = iTy = \begin{pmatrix} 0 & .1 \\ 1 & 0 \end{pmatrix}$$

 $H(x) = i \sigma_P (T_0 \overline{\partial}. \overline{\sigma} + Q T_3 \overline{\partial} n \overline{\sigma}) + \begin{pmatrix} 0 & T(n) \\ T^*(n) & 0 \end{pmatrix}$
 $PH(x)P^{\dagger} = i\sigma_P (T_0 \overline{\partial}. \overline{\sigma} - Q T_3 \overline{\partial} n \overline{\sigma}) - \begin{pmatrix} 0 & T^*(n) \\ T(n) & 0 \end{pmatrix}$
 $= -H(-\overline{n}) + i\sigma_P O T_3 \overline{\partial} n \overline{\sigma}$ here $T^*(n) = T(-n)$
If we negled the term $O T_3 \overline{\partial} n \overline{\sigma}$ (we will discuss the this approximation), then we get.
 $PH(n)P^{\dagger} = -H(-n)$

At ouch, P is an energent symmetry of the model
Note that
$$P^2 = -1$$

We can define $P = PC_{25}T$
This P is local is neal space, anti-unitary
and patienties $P^2 = -1$ (hint: pando awfelly doe
tr. there reveal symmetry for a spiriful model).
* Chied symmetry $C = \sigma_3$
Lock back at $H(n)$. If $w_{0:0}$, the homeltonican
only catains σ_{12} and σ_{13} and these catains with C
we generally: $CH(n)t = -H(n) \neq 2w_0$ $T_2 \sigma_0 \sum_{j=1}^{2} e^{-iq_j^2 n}$
 $w_0 = 0$ is called the (first) chiral lement

Emergent symmetries

4- TBG: Topology

Chern number C C chiral edge states. redust edge mode due to the improvidelists of backscattering. (requires an orcherol magnetic field) ercomple: Landare levels London boels, perfectly flat band, Chem number C=1 per band. n=0 fully delocatized also the gelinder permeter. per Landar Lovel. granlingtin of the Hall and adams guessia in the or duration azle der

Second, it cannot be trivialized by "any" ticial land.

) gyffed hulk ond edie mede (ocen ergerinnetske in meta-materials)

Not protected unless you have time reversal symmetry (think about adding open and playing with T? - 1 and its antiamitary behavior, protest tile crossing in the last stulture) X protected but only mind 2.

Hofstadter and topology

What about a Obern hundred?
- close the gop as non as you add any
infinitational amount of magnetic flere.
Streda famula: the filling facts of the band at non-zero
flere depends a the Obern number.

$$\overline{Try} = \frac{\partial m}{\partial B}$$
, Obern humble $\overline{Try} = \frac{Ce^2}{h}$.
 $\overline{Try} = \frac{\partial m}{\partial B}$, Obern humble $\overline{Try} = \frac{Ce^2}{h}$.
 $\overline{Sm} = \frac{C}{SB}$, magnetic field.
 $\overline{Trevisition}$ of Obern number $(Sr=C\frac{D}{Ho})$
 $\overline{Trevisition}$ of Obern number $(Sr=C\frac{D}{Ho})$
 $\overline{Trevisition}$ of $Chern number (Sr=C\frac{D}{Ho})$
 $\overline{Trevisition}$ of $Sr o Sm charges to beep on number $\frac{1}{Hor}$.$

 $e_{V} = +1$

 $e_{Y} = -1$

 $e_{Y} = -1$

• Chiral limit, each band has its own Chern, spin, valley quantum numbers.

Quantized magnetic-field response in TBG

Nuckolls et al., Nature (2020)