Insulating phases in twisted bilayer graphene

N. Regnault

Princeton University

Quantum Fluids of Light and Matter July 2022

Hofstadter and topology

What about a Chein unlaba? the filling factor of the land at non-zero flere depends on the Streda famula: Chem number C. Chen would only = Cer Org= JA. fn L 6B Deliation (red) of classify $\delta y = C \frac{\Phi}{\Phi_0}$ flere quantur We.

13ade 127BG # C25T sym leads to fragile grology. * (keads strag toplogy ZZ TI. -> Chiral sysameter is helpful. Cest describe you two action bands wing wavefunctions with appoint chein number ey=±1. (1) not eigenstate of H). + Chinal symmetry each ey is an eigensets of G r 2 = 8 bands. '_r 2 valley actin mm $k_{\gamma} = t^{1}$ K'• Filling factor $\nu = -4, ..., 4$. Charge neutrality at ν = 0. $e_{V} = +1$ Chiral limit, each band has its own $e_V = -1 \downarrow$ Chern, spin, valley quantum numbers. $e_{V} = -1$

Quantized magnetic-field response in TBG

TBG: Turning on the interaction

Coulomb interaction

Screened Coulomb:

$$V(\mathbf{q}) = \pi \xi^2 U_{\xi} \frac{\tanh(\xi q/2)}{\xi q/2}$$

2

with $U_{\xi} = e^2/(\epsilon\xi) \simeq 25 \text{meV.}$ Same interaction for the intralayer and interlayer.

Interaction Hamiltonian:

 $\delta \rho_{\mathbf{q}+\mathbf{G}}$ Fourier transform of the electron density shifted at charge neutrality.

Total Hamiltonian: $\hat{H} = \hat{H}_0 + \hat{H}_I$.

Projecting the interaction

- Near the first magic angle, focus on the $2\times 2\times 2$ active bands.
- Simplify by projecting \hat{H} $H_0 = \sum_{n=\pm 1}^{\infty} \sum_{\{\eta, s\}} \sum_{\mathbf{k} \in \mathsf{MBZ}} \epsilon_{n,\eta}(\mathbf{k}) c^{\dagger}_{\mathbf{k}n\eta s} c_{\mathbf{k}n\eta s}, \quad H_I = \frac{1}{2\Omega_{\mathrm{tot}}} \sum_{\mathbf{q} \in \mathsf{MBZ}} \sum_{\mathbf{G} \in \mathcal{Q}_0} O_{-\mathbf{q},-\mathbf{G}} O_{\mathbf{q},\mathbf{G}}$

• $n = \pm 1$ TBG band index, $\eta = \pm$ valley index, $s = \uparrow, \downarrow$ spin index. • $c_{knns}^{\dagger} \leftrightarrow$ eigenstates of the one-body problem.

• H_{I} is positive semi-definite $O_{\mathbf{q},\mathbf{G}}^{\dagger} = O_{-\mathbf{q},-\mathbf{G}}$ $O_{\mathbf{q},\mathbf{G}} = \sum_{\mathbf{k}\eta s} \sum_{m,n=\pm 1} \sqrt{V(\mathbf{q}+\mathbf{G})} M_{m,n}^{(\eta)}(\mathbf{k},\mathbf{q}+\mathbf{G}) \left(c_{\mathbf{k}+\mathbf{q},m,\eta,s}^{\dagger} c_{\mathbf{k},n,\eta,s} - \frac{1}{2} \delta_{\mathbf{q},\mathbf{0}} \delta_{m,n} \right)$ Kang-Vafek (2019), Huber(2017), TGB III

Form factor and FMC

Form factor:

$$M_{m,n}^{(\eta)}\left(\mathbf{k},\mathbf{q}+\mathbf{G}\right)=\sum_{\alpha}\sum_{\mathbf{Q}\in\mathcal{Q}_{\pm}}u_{\mathbf{Q}-\mathbf{G},\alpha;m\eta}^{*}\left(\mathbf{k}+\mathbf{q}\right)\underbrace{u_{\mathbf{Q},\alpha;n\eta}\left(\mathbf{k}\right)}$$

 $u_{\mathbf{Q},\alpha;n\eta}$ eigenstates of the non-interacting Hamiltonian. Exponential convergence with **G**.

Flat Metric Condition (FMC):

 $M_{m,n}^{(\eta)}(\mathbf{k},\mathbf{q}+\mathbf{G}) = \xi(\mathbf{q}+\mathbf{G})\delta_{m,n}$ i.e. the form factor does not depend on **k**. Is this a valid approximation? Worst case scenario picture ($w_0/w_1 = 0.8$)

Symmetries

- C_{3z} , C_{2z} and T. P is also a symmetry $\{P, H_0\} = 0$ but $[P, H_I] = 0$.
- $U(2) \times U(2)$ (one U(2) spin+charge per valley).
- If we discard H_0 (flatband limit), $C_{2z}P$ becomes a symmetry and promotes $U(2) \times U(2)$ to U(4).
- (1st) chiral symmetry acts differently: $\{C, H_0\} = 0$ but $[C, H_I] = 0$.
- $CC_{2z}P$ becomes a symmetry and promotes $U(2) \times U(2)$ to another U(4).
- In the chiral-flatband, an extended $U(4) \times U(4)$ (not the previous U(4)'s), one per e_Y .

TBG III (2020), Vafek and Kang (2019), Bultinck et al. (2020)

Exact low energy states

Exact low energy states

- Flat band limit, H is positive semi-definite
- $O_{\mathbf{q},\mathbf{G}} |\Psi\rangle = 0$ for any q, G, then $|\Psi\rangle$ is a groundstate (not unique in principle).
- Additional hypotheses:
 - Chiral-flatband limit.
 - Flat metric condition or $\nu = 0$.
- For the different integer ν , the filled bands (i.e., product states) are exact ground states, "ferromagnetic" $U(4) \times U(4)$.

Exact low energy states: insulating phases

- At fixed ν , GS are degenerate with different Chern numbers $\nu_c = 4 |\nu|, 2 |\nu|, ..., |\nu| 4.$
- Away from the FMC, we can only prove they are eigenstates.
- $\nu_c = 0$ are still exact GS in in the nonchiral-flat U(4).

The whole gallery:

filling ν	Chern number ν_C	nonchiral-flat U(4)	chiral-flat $U(4) \times U(4)$	exact under	if nonchiral-flat GS
-3	±1	$[N_M]_4$	$([N_M]_4, [0]_4)$	$U(4) \times U(4)$	yes (perturbative)
-2	0	$[2N_{M}]_{4}$	$([N_M]_4, [N_M]_4)$	U(4)	yes (exact)
-2	±2	$[N_{M}^{2}]_{4}$	$([N_M^2]_4, [0]_4)$	U(4)×U(4)	no
$^{-1}$	± 1	$[2N_M, N_M]_4$	$([N_M^2]_4, [N_M]_4)$	U(4)×U(4)	yes (perturbative)
$^{-1}$	(±3/	$[N_{M}^{3}]_{4}$	$([N_M^3]_4, [0]_4)$	U(4)×U(4)	no
0	\sim	$[(2N_M)^2]_4$	$([N_M^2]_4, [N_M^2]_4)$	U(4)	yes (exact)
0	±2	$[2N_M, N_M, N_M]_4$	$([N_M^3]_4, [N_M]_4)$	$U(4) \times U(4)$	no
0	±4	[0]4	$([0]_4, [0]_4)$	$U(4) \times U(4)$	no

filling ν	Chern number ν_C	chiral-flat $U(4) \times U(4)$	exact under
-3	± 1	$([N_M]_4, [0]_4)$	$U(4) \times U(4)$
-2	0	$([N_M]_4, [N_M]_4)$	U(4)
-2	±2	$([N_M^2]_4, [0]_4)$	$U(4) \times U(4)$

- N_M number of moiré unit cells, number of electrons $N = (4 + \nu)N_M$.
- U(4)× U(4) irreps appearing by pairs $[a]_4, [b]_4$ and $[b]_4, [a]_4$ due to $C_{2z}T$ symmetry (if $[a]_4 \neq [b]_4$).

TBG: Away from the perfect world

Chiral-Flatband limit: how good is the FMC?

- Testing the model with exact diagonalizations.
- Using the $U(4) \times U(4)$ symmetry to label eigenstates with their irrep.
- Discretize the MBZ: $N_1 \times N_2$ lattice points.
- $\lambda = 0$ with FMC, $\lambda = 1$ without FMC.
- Testing $\nu = -3$ on a $N_1 \times N_2 = 4 \times 2$ (irreps appear in pairs related by $C_{2z}T$, switching the 2 U(4)'s).

Reality check

u = -3: away from the chiral-flatband limit

- Tune w_0/w_1 and t (0 flatband, 1 full model).
- Groundstate Chern state $\nu_c = \pm 1$ for $w_0/w_1 < 0.9$ (with FMC) and $w_0/w_1 < 0.4$ (w/o FMC).
- Large w₀/w₁. Transition to (nematic) metal or CDW at K_M, M_M, see DMRG, Kang, Vafek (2020), Zaletel (2020).

fully polarized:

$\nu = -2$: away from the chiral-flatband limit

- Two competing states: $\nu_c = 0$ and $\nu_c = 2$.
- ED for the valley polarized system $(N_1 \times N_2 = 3 \times 2)$.
- Nonchiral-flat: spin FM favored (see (a)), lowest Chern number favored.
- Chiral-nonflat: spin singlet favored (see (b)), lowest Chern number favored.
- Without FMC, no longer spin FM when $w_0/w_1 > 0.6$ (in valley polarized sector, not ground state).

Perturbation theory (2nd order)

- $|\nu_C| = 0$ are still exact GS (with FMC) in the nonchiral-flat limit.
- For any ν , the smallest $|\nu_C|$ is favored.

nonchiral-nonflat:

- Chern number $\nu_C = 0$: fully intervalley coherent $(\phi_{\uparrow} = \phi_{\downarrow} = \pi/2).$
- Chern number $\nu_C < 4 |\nu|$: partially intervalley coherent $(\phi_{\uparrow} = \pi/2, \phi_{\downarrow} = 0).$
- Highest Chern number $\nu_C = 4 - |\nu|$: valley polarized ($\phi_{\uparrow} = \phi_{\downarrow} = 0, < 0.005$ meV/electron gain).

In-Field Transition and Experimental Consequence

- For $|\nu| = 1, 2$, a 1st order phase transition from $\nu_C = \operatorname{sgn}(\nu B)(2 |\nu|)$ to $\nu_C = \operatorname{sgn}(\nu B)(4 |\nu|)$ (e.g. for $\nu = 2$, from $|\nu_C| = 0$ to $|\nu_C| = 2$).
- Transition field B^*_{ν} (from perturbation theory)

$$B_{\nu}^* = \frac{U_1 - \nu^2 U_2}{|\nu| U_0} \frac{h}{e \Omega_M}$$

• For $w_0/w_1 = 0.8$: $B_1^* = 0.5T$ and $B_2^* = 0.2T$

In agreement with STM/transport experimental observations of states with Chern number
 ν_C = sgn(νB)(4 - |ν|) in magnetic field.

Scanning tunneling microscope: Identifying insulators

A zoo of correlated insulators

• Each Slater determinant ground state can be rotated (\hat{U}) :

$$\ket{arphi} = \hat{oldsymbol{U}} \prod_{f k} \prod_{j=1}^{4+
u} \hat{d}^{\dagger}_{f k,e_{Y_j},\eta_j,s_j} \ket{0}.$$

Probing the TBG spectral function with STM

• Key quantity is the spectral function

$$A(\mathbf{r},\omega) = \sum_{\xi,s} \left[\left| \langle \xi | \hat{\psi}_s^{\dagger}(\mathbf{r}) | \varphi \rangle \right|^2 \delta(\omega - E_{\xi} + E_{\varphi}) + \left| \langle \xi | \hat{\psi}_s(\mathbf{r}) | \varphi \rangle \right|^2 \delta(\omega + E_{\xi} - E_{\varphi}) \right]$$

• In the case of the TBG insulators, this simplifies to

$$A(\mathbf{r},\omega) = \sum_{\mathbf{k}',\mathbf{k}\in\mathrm{MBZ}}\sum_{\substack{n,\eta\\n',\eta'}} \left[\mathcal{M}^{+}(\omega) + \mathcal{M}^{-}(\omega)\right]_{\mathbf{k}n\eta,\mathbf{k}'n'\eta'} \left[\mathcal{B}(\mathbf{r})\right]_{\mathbf{k}n\eta,\mathbf{k}'n'\eta'}.$$

Spectral function matrix elements depend on both the GS and its charge-one excitations

$$\left[\mathcal{M}^{+}(\omega)\right]_{\mathbf{k}n\eta,\mathbf{k}'n'\eta'} = \sum_{\xi,s} \langle \varphi | \hat{c}_{\mathbf{k}',n',\eta',s} | \xi \rangle \langle \xi | \hat{c}_{\mathbf{k},n,\eta,s}^{\dagger} | \varphi \rangle \delta\left(\omega - E_{\xi} + E_{\varphi}\right).$$

• Spatial factor $\mathcal{B}(\mathbf{r})$ depends on the TBG active band wave-functions and graphene p_z orbitals.

Spectral function shopping list

- GS wavefunction
- one particle excitation wf
- energy of the excitations

Vafek et al., 2020; Bernevig et al., 2021

• Because ground-state $|\varphi\rangle$ is **exact**, charge-one excitations are readily available:

$$\begin{bmatrix} H_{I} - \mu \hat{N}, \hat{c}_{\mathbf{k},n,\eta,s}^{\dagger} \end{bmatrix} |\varphi\rangle = \sum_{m} R_{mn}^{\eta} \left(\mathbf{k}\right) \hat{c}_{\mathbf{k},m,\eta,s}^{\dagger} |\varphi\rangle$$
$$\begin{bmatrix} H_{I} - \mu \hat{N}, \hat{c}_{\mathbf{k},n,\eta,s} \end{bmatrix} |\varphi\rangle = \sum_{m} \tilde{R}_{mn}^{\eta} \left(\mathbf{k}\right) \hat{c}_{\mathbf{k},m,\eta,s} |\varphi\rangle$$

- General trend for the TBG insulators: exact many-body *n*-particle excitations above |φ⟩ can be computed as a (*n*−1)-body problem.
- Large system sizes can be achieved (*e.g.* 50 × 50 on a personal computer).

Warm-up: Evidence of strong correlations at $u = \pm 4$

- Validate strong-coupling approach by looking at the $\nu = -4$ correlated band-insulator (no ambiguity in the ground state wave-function).
- Inspect the signal at the AA and AB stacking centers

• Clear signatures of strong correlation:

- Wide signal, due to the strong dispersion of the charge-one excitation bands.
- Different peak structure.
- The signal varies between the AA and AB stacking centers.

Kekulé distortion and intervalley-coherence

Intervalley coherence should lead to $3 \times$ enlargement of the graphene unit cell $(\sqrt{3} \times \sqrt{3} \text{ ordering}).$

Graphene +B, Liu et al., 2021

Graphene BZ

Graphene BZ

Kekulé distortion and intervalley-coherence

Intervalley coherence should lead to $3 \times$ enlargement of the graphene unit cell $(\sqrt{3} \times \sqrt{3} \text{ ordering})$.

Does intervalley-coherence **always** lead to $\sqrt{3} \times \sqrt{3}$ ordering?

Breaking valley U(1)symmetry is a necessary, but not sufficient condition for observing Kekulé distortion

$$\begin{split} |\mathsf{T}\text{-}\mathsf{IVC}\rangle &= \prod_{\substack{\mathbf{k} \\ e_{Y} = \pm 1}} \frac{\hat{d}_{\mathbf{k},e_{Y},+,\uparrow}^{\dagger} + \hat{d}_{\mathbf{k},e_{Y},-,\uparrow}^{\dagger}}{\sqrt{2}} |0\rangle \\ |\mathsf{K}\text{-}\mathsf{IVC}\rangle &= \prod_{\substack{\mathbf{k} \\ e_{Y} = \pm 1}} \frac{\hat{d}_{\mathbf{k},e_{Y},+,\uparrow}^{\dagger} + e_{Y}\hat{d}_{\mathbf{k},e_{Y},-,\uparrow}^{\dagger}}{\sqrt{2}} |0\rangle \end{split}$$

Discrete symmetries of TBG lead to an exact cancellation of the $\sqrt{3} \times \sqrt{3}$ signal

An intuitive picture for maximally spin-polarized insulators

• Filling a single IVC Chern band will give rise to Kekulé distortion

An exact cancellation of the $\sqrt{3} \times \sqrt{3}$ signal occurs upon filling a pair of Chern bands with opposite Chern numbers whose valley polarization projections in the valley xy plane of the Bloch sphere are nonzero and cancel out.

Further differentiating between different insulators

See also J.P. Hong et al. arXiv:2110.14674

Conclusion

- Combination of chiral and flat limits, the Coulomb interacting Hamiltonian exhibit enhanced U(4) or $U(4) \times U(4)$ symmetries.
- Exact/perturbative (Chern) insulators are derived at integer fillings and confirmed in ED.
- Charge excitations can be exactly calculated.
- STM signal for the most promising correlated insulator candidates.
- STM signal of different correlated insulators contains distinctive features which can be seen "by eye".
- Breaking valley U (1) symmetry does not necessarily lead to $\sqrt{3}\times\sqrt{3}$ ordering.
- Reconstruct the GS using STM measurements, as was done recently for the zeroth Landau level of graphene.

Quantum many-body physics is a harsh problem

Look back at the interaction term

$$\hat{H}_{I} = \frac{1}{2\Omega_{\text{tot}}} \sum_{\mathbf{G} \in \mathcal{Q}_{0}} \sum_{\mathbf{q} \in \mathsf{MBZ}} V(\mathbf{q} + \mathbf{G}) \delta \rho_{-\mathbf{q}-\mathbf{G}} \delta \rho_{\mathbf{q}+\mathbf{G}}$$

Electron density shifted at charge neutrality

$$\delta \rho_{\mathbf{q}+\mathbf{G}} = \sum_{\mathbf{k}\in \mathrm{MBZ}} \sum_{\eta,s} \sum_{\mathbf{Q}\in\mathcal{Q}_{\pm}} \sum_{\alpha} \left(\mathsf{c}_{\mathbf{k}+\mathbf{q},\mathbf{Q}-\mathbf{G},\alpha,\eta,s}^{\dagger} \mathsf{c}_{\mathbf{k},\mathbf{Q},\alpha,\eta,s} - \frac{1}{2} \delta_{\mathbf{q},0} \delta_{\mathbf{G},0} \right)$$

Using the one-body eigenstate basis

$$c^{\dagger}_{\mathbf{k},m,\eta,s} = \sum_{\mathbf{Q}\alpha} u_{\mathbf{Q}\alpha,m\eta}(\mathbf{k}) c^{\dagger}_{\mathbf{k},\mathbf{Q},\eta,\alpha,s}, \quad c^{\dagger}_{\mathbf{k},\mathbf{Q},\eta,\alpha,s} = \sum_{m} u^{*}_{\mathbf{Q},\alpha,m\eta}(\mathbf{k}) c^{\dagger}_{\mathbf{k},m,\eta,s}$$

$$\delta \rho_{\mathbf{q}+\mathbf{G}} = \sum_{\mathbf{k}\in \mathrm{MBZ}} \sum_{\eta,s} \sum_{m,n} \left(\sum_{\mathbf{Q}\in\mathcal{Q}_{\pm}} \sum_{\alpha} u^*_{\mathbf{Q}-\mathbf{G},\alpha m\eta}(\mathbf{k}+\mathbf{q}) u_{\mathbf{Q},\alpha n\eta}(\mathbf{k}) \right) \left(c^{\dagger}_{\mathbf{k}+\mathbf{q},m,\eta,s} c_{\mathbf{k},n,\eta,s} - \frac{1}{2} \delta_{\mathbf{q},0} \delta_{m,n} \right)$$

Chiral-Flatband limit: how good is the FMC?

- Testing the model with exact diagonalizations.
- Using the $U(4) \times U(4)$ symmetry to label eigenstates with their irrep.
- Discretize the MBZ: $N_1 \times N_2$ lattice points.
- $\lambda = 0$ with FMC, $\lambda = 1$ without FMC.
- Testing $\nu = -2$ on a $N_1 \times N_2 = 3 \times 2$ (irreps appear in pairs related by $C_{2z}T$, switching the 2 U(4)'s).

Charged excitations, size effects

• Charge ± 1 at $\nu = -3$ (see TBG VI for other ν 's).

• Focus on irreps close to the $U(4) \times U(4)$ ferromagnet.

To :: or not to :: ?

- No normal ordering in H_I . Does not matter before projection.
- Difference normal/no normal ΔH_I is the "Hartree-Fock" contribution from the filled passive bands.
- Restore the PH symmetry $\nu \leftrightarrow -\nu$. Focus on $\nu < 0$.
- Like fractional Chern insulator (trivial in Landau level).
- Could wash away insulating phases, e.g., at $\nu = 0$

