Dual Bose-Fermi Superfluids

Enrico Fermi School on Mixtures of Quantum Gases Varenna, July 18,2022

Stiftung/Foundation

Bose and Fermi Statistics

Enrico Fermi on lake Como

ITALIAN PHYSICAL SOCIETY

PROCEEDINGS of the INTERNATIONAL SCHOOL OF PHYSICS "ENRICO FERMI"

COURSE CLXIV

edited by M. INGUSCIO, W. KETTERLE and C. SALOMON Directors of the Course VARENNA ON LAKE COMO VILLA MONASTERO 20 – 30 June 2006

Ultra-cold Fermi Gases

2007

IOS

Varenna 2006

Outline of the two lectures

- Dual Bose-Fermi superfluid with ⁶Li-⁷Li isotopes
- Center of mass modes and link with Equation of State
- Measurement of critical velocity for superfluid counterflow
- Lifetime of the Bose Fermi mixture: a simple formula !
- Link with Tan's contact

1) I. Ferrier-Barbut, M. Delehaye, S. Laurent, A. T. Grier, M. Pierce, B. S. Rem, F. Chevy, and C. Salomon, Science, **345**, 1035, 2014

2) M. Delehaye, S. Laurent, I. Ferrier-Barbut, S. Jin,

F. Chevy, C. Salomon, PRL, 115, 265303, 2015

3) Y. Castin, I. Ferrier-Barbut and C. Salomon Comptes-Rendus Acad. Sciences, Paris, **16**, 241, 2015

4) S. Laurent, M. Pierce, M. Delehaye, T. Yefsah, F. Chevy, C. Salomon Phys. Rev. Lett., **118**, 103403, 2017

111 years of quantum fluids

Bose Einstein condensate

T~ 2.2 K

Superconductivity

High T_c 77 K

³He 2.5 mK

Mixtures of Superfluids

Bose-Bose superfluid mixtures first observed long ago !

Two hyperfine states in Rb at JILA (Myatt et al. '97) and vortex production Mixtures of BEC's at LENS, Hamburg,....

Spinor condensates at MIT, Hamburg, Berkeley, ENS,

Dark-bright soliton production in two Rb BEC, Engels group, PRL 2011

Many groups are studying Bose-Fermi mixtures but until 2014 none had achieved double Bose-Fermi superfluidity

Today at least 3 examples, ⁶Li-⁷Li at ENS (2014) ⁶Li-⁴¹K at USTC, ⁶Li-¹⁷⁴Yb at Washington Univ., (2016)

Searching for superfluid Bose-Fermi systems: ⁴He - ³He mixture

Molar fraction of He-3 in the mixture (%)

Volovik, Mineev, Khalatnikov, JETP, 42, 342 (1975): Fermi liquid theory of mixture

Expected $T_c \sim 1$ to 20 μK ?

Bose-Einstein condensate

~200µm

⁷Li (boson)

⁷Li and ⁶Li isotopes

Fermions with two spin states and attractive interaction the BCS-BEC Crossover

Increasing attraction strength

BCS regime: $k_F|a| << 1$ Cooper pairs k, -k Well localized in Momentum: $k \sim k_F$ Delocalized in position

On resonance $na^3 >> 1$ $k_Fa \ge 1$ Pairs stabilized by Fermi sea Size of pairs $hv_F/\Delta \sim k_F^{-1}$

Leggett, Nozières, schmidt-Rink,... '80

a Molecular Condensate

A two-body bound state strongly bound molecules Size: a << n^{-1/3} n^{-1/3}: average distance between particles

Fermi Superfluid in the BEC-BCS Crossover

Fermions with two spin states $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and tunable attractive interaction

M. Greiner, C. Regal & D. Jin, Nature 2003 with potassium 40 Emergence of a molecular Bose–Einstein condensate from a Fermi gas

S. Jochim et al., Science 2003, with Lithium 6 Bose-Einstein condensation of molecules

Followed by large number of studies of BCS-BEC

crossover, both theory and experiment, see book edited by W. Zwerger

Equation of State of Quantum Gases

$$PV = Nk_BT$$

is a useful but incomplete equation of state !

Complete information is given by thermodynamic potentials:

Grand potential
$$\Omega = -PV = E - TS - \mu N$$

Pressure / Temperature Chemical potential
Volume / Entropy Atom number
Internal energy

 $P(\mu,T)$ is an equation of state of the gas

S. Nascimbène et al., Nature, **463**, 1057, (2010) temperature dependence and spin imbalance.

See also:

M. Horikoshi et al., Science, 327, 442 (2010), M. Zwierlein et al., MIT (2012)

The Equation of State of a Cold Gas

Q. Zhou, T.L. Ho, Nature Physics, 09 C. Cheng, S.Yip, PRB (2007)

The pressure is obtained from *in situ* images

$$P(\mu_z, T) = \frac{m\omega_r}{2\pi} \overline{n}(z)$$
$$\overline{n}(z) = \int dx dy \, n(x, y, z)$$

Doubly-integrated density profile Local density approx.

$$\mu(r) = \mu_0 - V(r)$$

 $P(\mu_z, T)$ is an Equation of State of the locally homogeneous gas

Universal Equation of State at unitarity

$$1/k_{F} a = 0$$

Thermodynamics is universal T. L.Ho, E. Mueller, '04

The system has continuous scale invariance

Pressure depends only on μ/k_BT

Critical temperature $T_c = 0.16 T_F$ is universal

At very low Temp.

$$\mu = \xi E_F$$

$$\xi = 0.37 E_F$$

Carlson, Hausmann, MIT, Ku et al., Science 2012

Universal Equation of State at Unitarity Comparison with Bold Diagrammatic Monte-Carlo

S. Nascimbène, N. Navon, K. Jiang, F. Chevy, C. Salomon, Nature 2010

5% agreement with a Many-Body theory in strongly interacting regime

Comparison with Bold Diagrammatic Monte-Carlo and MIT (2012)

5% agreement with a Many-Body theory in strongly interacting regime

Equation of State of Fermi gas in the BEC-BCS crossover

Pressure equation of state $P/P_0 = f(1/k_F a)$

An example of quantum simulation in the strongly correlated regime

N. Navon, S. Nascimbène, F. Chevy, C. Salomon, Science 328, 729-732 (2010)

Bose-Fermi superfluidity recipe

Requirements:

- Low a_{bf} (no interspecies demixing)
- High $|a_f|$ (high fermionic superfluid T_c)
- Positive a_{bb} (stable BEC)

⁶Li – ⁷Li mixture in the $|1>_{f}$, $|2>_{f}$ and $|2>_{b}$

Experimental Setup

Magneto-optical trap of bosonic ⁷Li and fermionic ⁶Li

After evaporation in a magnetic trap we load the atoms in a single beam optical trap (OT) with magnetic axial confinement. T~ 40 μ K

Evaporative cooling of mixture in OT

~ 4 second ramp, T~ 50-80 nK

Absorption imaging of the *in-situ* density distributions or Time of Flight

In situ density profiles

Unitary ⁶Li Fermi gas can cool any species fulfilling the requirements to BEC See also ⁶Li-⁴¹K, USTC, China, PRL '16, and ⁶Li-¹⁷³Yb, UWash, PRL'17

Long-lived Oscillations of both Superfluids

Fermi Superfluid

Coupled Superfluids

Single Superfluid Ratio = $(7/6)^{1/2} = (m_7/m_6)^{1/2}$

time

Oscillations of both superfluids

Coherent energy exchange between the two oscillators

Mean field model

- 1.5% down shift in ⁷Li BEC frequency
- BEC osc. amplitude beat at frequency $(\tilde{\omega}_6 \tilde{\omega}_7)/2\pi$
- Weak interaction regime: $k_F a_{bf} <<1$ and $N_7 << N_6$ Boson effective potential $V_{eff} = V(r) + g_{bf} n_6(r)$ with $g_{bf} = \frac{2\pi\hbar^2 a_{bf}}{m_{67}}$ $m_{67} = m_6 m_7 / (m_6 + m_7)$ LDA $n_6(r) = n_6^0 (\mu_6^0 - V(r))$

Where $n_6(\mu)$ is the Eq. of State of the stationary Fermi gas. For the small BEC: $V(r) \ll \mu_6^0$ Expand $n_6(r) \approx n_6^0(\mu_6^0) - V(r) \frac{dn_6^0}{d\mu_6} + \dots$

Boson effective potential and link with Equation of State

Thomas Fermi radius of BEC<< TF radius of Fermi Superfluid:

$$V_{eff} = g_{bf} n_6(0) + V(r) \left[1 - g_{bf} \left(\frac{dn_6^{(0)}}{d\mu_6} \right)_0 \right]$$

The potential remains harmonic with rescaled frequency

$$\tilde{\omega}_7 = \omega_7 \sqrt{1 - g_{bf} \left(\frac{dn^{(0)}}{d\mu_6}\right)_0}$$

A new means to access properties of the EoS!

The equation of state $n(\mu)$ at low T is known in the BEC-BCS crossover N. Navon et al., Science, 2010, M. Ku et al., Science 2012

Example: at unitarity, 1/a=0

From Thomas Fermi radius of ⁶Li superfluid, we find: $\tilde{\omega}_7 = 2\pi \times 15.43 \ Hz$ very close to the measured value: $\tilde{\omega}_7 = 2\pi \times 15.40(1) \ Hz$

Equation of State and Bose-Fermi Coupling in BEC-BCS crossover

What is the critical velocity for superfluid counterflow ?

Increase initial displacement

Increase relative velocity

Critical velocity for superfluid counterflow

Landau criterion

Momentum Conservation : $M\mathbf{V} = M\mathbf{V}' + \hbar \mathbf{k}$ Energy Conservation : $MV^2 / 2 = MV'^2 / 2 + \varepsilon_{\mathbf{k}}$

$$\hbar k V \geq \hbar \mathbf{k} \cdot \mathbf{V} = \varepsilon_k + \hbar^2 k^2 / 2M \geq \varepsilon_k$$

Motion of impurity is damped by the creation of elementary excitations if:

$$V \ge V_c = \min_k \left(\frac{\varepsilon_k}{\hbar k}\right)$$

For a linear excitation spectrum $\varepsilon_k \sim kc$, $V_c = c$, the sound velocity

Critical velocities

Revisiting Landau criterion for a Bose-Fermi mixture @ T=0

Y. Castin, I. Ferrier-Barbut and C. Salomon Comptes-Rendus Acad. Sciences, Paris, **16**, 241 (2015)

$$\hbar \mathbf{k}', \varepsilon_{F,\mathbf{k}'}$$
 $\hbar \mathbf{k}, \varepsilon_{B,\mathbf{k}}$

1 Excitation in the bosonic superfluid $E_{B,k}$

$$E_{\mathrm{B},\mathbf{k}} = \varepsilon_{\mathrm{B},\mathbf{k}} + \hbar \mathbf{k} \cdot \mathbf{V}_{\mathrm{B}}$$

1 Excitation in the fermionic superfluid

Energy-momentum conservation:

$$E_{\mathsf{F},\mathbf{k}'} = \mathcal{E}_{\mathsf{F},\mathbf{k}'} + \hbar \mathbf{k}' \cdot \mathbf{V}_{\mathsf{F}}$$
$$E_{\mathsf{B},\mathbf{k}} + E_{\mathsf{F},\mathbf{k}'} = \mathbf{0} \qquad \mathbf{k} + \mathbf{k}' = \mathbf{0}$$

$$|\mathbf{V}_{B} - \mathbf{V}_{F}| \ge \min_{k} \left(\frac{\mathcal{E}_{B,k} + \mathcal{E}_{F,-k}}{\hbar k} \right)$$

Sound Modes: $V_{c} = c_{B} + c_{F}$

See also Abbad et al. EPJD 69, 126 (2015), F. Chevy, PRA **91**, 063606 (2015), W. Zheng and H. Zhai, Phys. Rev. Lett. 113, 265304 (2014)

Counter-flow critical velocity

Next lecture

What is the lifetime of the Bose-Fermi mixture ?

Three-body recombination as a probe of quantum correlations in a strongly interacting system