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Why Spin-Orbit Coupled BEC Gases?

- Give rise to artificial gauge fields opening perspectives for 

novel quantum effects in neutral systems

- Spin orbit coupling breaks  Galilean invariance with crucial 

consequence on superfluid behavior

- Emergence of a supersolid phase breaking  spontaneously 

both phase  and translational invariance and giving rise to 

novel Goldstone modes



LECTURE 1

- The quantum phases of a spin-orbit coupled mixture

of Bose-Einstein condensates

- Order parameter and nature of the phase transitions

- Sound and Dynamic properties of SOC BEC’s

LECTURE 2

- Superfluidity and rotation of SOC BEC’s

- Supersolidity and the novel Goldstone modes



Two detuned and polarized laser 

beams + non linear Zeeman field 

provide Raman transitions 

between two spin states, giving 

rise to new s.p. Hamitonian in the 

Laboratory frame.
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Simplest realization of (1D) spin-orbit coupling in s=1/2

Bose-Einstein condensates (Spielman, Nist, 2009)



Two detuned and polarized laser 

beams + non linear Zeeman field 

provide Raman transitions 

between two spin states, giving 

rise to new s.p. Hamitonian in the 

Laboratory frame.
The Hamiltonian is invariant 

with respect to helicoidal 

(skew) translations

(continuous symmetry)

Corresponding to rigid 

translation plus rotation in

spin space 
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Since the Hamiltonian is time dependent in the laboratory frame, 

it is convenient to consider the unitary transformation 

(corresponding to position and time dependent spin rotation

with                        . The lab Hamiltonian        is transformed into 

a translationally invariant and  time independent Hamiltonian 

characterized by 1D  spin-orbit coupling  
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Since the Hamiltonian is time dependent in the laboratory frame, 

it is convenient to consider the unitary transformation 

(corresponding to position and time dependent spin rotation

with                        . The lab Hamiltonian        is transformed into 

a translationally invariant and  time independent Hamiltonian 

characterized by 1D  spin-orbit coupling  

is canonical momentum

is laser wave vector difference

is strength of Raman coupling            

is effective Zeeman field
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The Spin Orbit coupled Hamiltonian

is translationally invariant

However it breaks

- Galilean invariance since the physical momentum

operator 

does not commute with the Hamiltonian
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The Spin Orbit coupled Hamiltonian

is translationally invariant

However it breaks

- Galilean invariance since the physical momentum

operator 

does not commute with the Hamiltonian

- The SOC Hamiltonian violates also parity and 

time reversal symmetries

)( 0 zxxx kpmvP 

  zxzx pkph 
2

1

2

1
][

2

1 22

00  



Symmetry properties of  spin-orbit Hamiltonian

  zxzx pkph 
2

1

2

1
][

2

1 22

00  

- Translational invariance:            uniform ground state

configuration, unless crystalline order is spontaneously

formed (stripes, supersolidity)

- Violation of parity and time reversal symmetry

breaking of symmetry in excitation spectrum

- Violation of Galilean invariance:          breakdown of Landau 

criterion for superfluid velocity, emergence of dynamical

instabilities and suppression of superfluidity
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Different strategies to realize novel quantum phases with SOC

- First strategy (Lin et al., Nature 2009).

Spatially dependent detuning (       ) in strong Raman coupling

(            ) regime yields position dependent vector potential

and  effective Lorentz force 

in neutral atoms.

Application of detuning effectively corresponds to bringing

the system into a rotating non inertial frame and  causes the 

appearence of quantized vortices. 
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- Second strategy (Lin et al. Nature 2011) – smaller values of 

Solution of Schrodinger equation 

with single particle Hamiltonian 

causes, for small values of     ,

the appearence  of two single-particle 

states in the lowest band, which can 

host a Bose-Einstein condensate 

with different canonical momentum

If all the atoms occupy the plane wave state          or

the corresponding quantum phase is called plane wave phase.                                         

At large      the two minima reduce to a single minimum with
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Transition has second order nature 

It has been observed

at the predicted value

of  Raman coupling

Plane wave-single minimum phase transition

 /4/2 2

0 RC Emk 
Lin et al., 

Nature 2011

- Phase transition is driven by single-particle Hamiltonian. 

(weakly affected by two-body interactions in 87Rb) 

- Spin polarizability diverges at the transition (see later)

(G. Martone, Yun Li, S.S. EPL 2012) 



Are two body interactions relevant ? 

Crucial effects show up in

- Novel dynamic and superfluid features

- Emergence of the new supersolid quantum phase



Interactions in 1D SO coupled s=1/2 BECs (T=0) discussed by
Ho and Zhang (PRL 2011), Yun Li, Pitaevskii, Stringari (PRL 2012), …..

- One assumes which ensures phase mixing  

in the absence of  Raman coupling
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Interactions in 1D SO coupled s=1/2 BECs (T=0) discussed by
Ho and Zhang (PRL 2011), Yun Li, Pitaevskii, Stringari (PRL 2012), …..

- One assumes which ensures phase mixing  

in the absence of  Raman coupling

- Interactions are treated within mean field approximation

(s=1/2 coupled Gross-Pitaevskii equations) 
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Interactions in 1D SO coupled s=1/2 BECs (T=0) discussed by
Ho and Zhang (PRL 2011), Yun Li, Pitaevskii, Stringari (PRL 2012), …..

- One assumes which ensures phase mixing  

in the absence of  Raman coupling

- Interactions are treated within mean field approximation

(s=1/2 coupled Gross-Pitaevskii equations) 

- Setting (no momentum transfer ) yields Rabi

coupled spin mixtures (see lectures by Oberthaler and 

Lamporesi)
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Gross Pitaevskii equations in presence of SO coupling

Interplay between modified single particle  Hamiltonian 

and two-body interactions give rise to

- Novel dynamic and superfluid properties

- Emergence of a novel supersolid phase. 
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Quantum phase diagram predicted 

by SOC Hamiltonian at T=0
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Order parameter in the SOC quantum  phases

I) Supersolid phase + higher

harmonics

density fringes

fixed by 

I) Plane wave phase

(magnetized phase) 

I) Zero momentum phase
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Transition is first order.

Critical  frequency  is                               where
(Ho and Zhang PRL 2011, 

Yun Li et al. PRL 2012)

Value of       crucially depends on interactions. Vanishes if 

The  phase transition between a spin

mixed and a spin separated phase was

observed at the predicted value of  

First experimental evidence for density fringes                    

in the spin mixed state has become available 

with Bragg scattering  (MIT 2017)
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Transition is first order.

Critical  frequency  is                               where
(Ho and Zhang PRL 2011 

Yun Li et al. PRL 2012)

Value of       crucially depends on interactions. Vanishes if 

The  phase transition between a spin

mixed and a spin separated phase was

observed at the predicted value of  

First experimental evidence for density fringes                    

in the spin mixed state has become available 

with Bragg scattering  (MIT 2017)
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In usual BEC’s the hydrodynamic eqs consist of two equations

- Equation of Continuity (eq. for the density) 

- Euler like equation (eq. for the phase)

- In a two component quantum mixture one would

expect four equations (two for each component)

Hydrodynamic equations of SOC BEC’s
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In usual BEC’s the hydrodynamic eqs consist of two equations

- Equation of Continuity (eq. for the density) 

- Euler like equation (eq. for the phase)

- In a two component quantum mixture one would

expect four equations (two for each component)

- In SOC BEC’s the emergence of the Raman coupling results in 

the locking of the relative phase of the spin-up and spin-

down condensates in both the Plane wave and in the Single 

Minimum phases.  The hydrodynamic equations then

reduce to three equations (see Martone et al. PRA 86, 063621 2012) 

- Equation of continuity

- Euler like equation

- Equation for the spin density

Hydrodynamic equations of SOC BEC’s
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Assuming: 

- (good approximation for PW and SM phases of 87Rb) 

- locking of relative phase (imposed by Raman coupling if )

- Small magnetization (                       ) in Single Minimum Phase

Action associated with GP energy functional reads (                )

Imposing vanishing variation of the action yields

- With respect to phase Equation  of Continuity

- With repect to density Euler-like equation

- With respect to spin density coupling between

How to derive the Hydrodynamic Equations 
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Equation of Continuity

(current is modified by SO coupling) 

Equation for gradient of  the phase

(Euler like equation) 

Equation for the spin density

(coupling with  gradient of the phase) 

(Equations hold in Single Minimum phase – easy generalization 

to Plane Wave phase)

The novel hydrodynamic equations
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After merging the equations for density and spin density 

the HD equations reduce to: 

for the density and 

for the velocity field 

with the 

effective mass

given by 
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Propagation of sound

In uniform matter sound propagates at the velocity:

for the density and 

Softening of sound velocity along x directions is particulary 

important near the transition between Single Minimum and Plane 

Wave phases, where effective mass becomes large. 
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Propagation of sound

In uniform matter sound propagates at the velocity:

for the density and 

Softening of sound velocity along x directions is particulary 

important near the transition between Single Minimum and Plane 

Wave phases, where the effective mass becomes large. 

Bragg spectroscopy exps. confirm 

softening  of sound velocity. 

At the transition the phonon dispersion

is replaced by parabolic behavior
(Si-Cong Ji et al PRL 2015)
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Anisotropic Expansion after release of the trap

After release  of the trap (                       ) the expansion exhibits 

strong asymmetry in the x-y plane.

In the absence of SOC,  expansion

would be symmetic (             )

The large value of the effective 

mass near the transition between 

Single Minimum and Plane Wave 

phases, makes the expansion 

along the x-direction much slower

than along y.

Red lines:   HD prediction 

Circles:  Time Dep.  GP simulation Qu,Pitaevskii and SS                          

New J.Phys.2017
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Quantum phase diagram predicted 

by SOC Hamiltonian at T=0
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Magnetic Susceptibility

By adding a small effective magnetic field           , the HD eq. for 

spin density takes the form (Single Minimum Phase with             ) 

Equilibrium condition of vanishing current, 

then yields result

for the susceptibility

In the Plane Wave Phase (         ) one instead finds 

In both cases     exhibits 

divergent behavior at the transition, 

(weakly affected by interactions)

[AFM vs FM like  transition 

(similar to Rabi coupled BECs

see Lamporesi lectures)]
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Softening of Center of Mass frequency 

The dipole (center of mass) oscillation in harmonic trap 

Is particularly sensitive to the value of the effective mass.

Assuming             , the HD equations 

applied to a harmonically trapped 

BEC, actually  provide the expression

for the dipole frequency

Experiments (Zhang et al. PRL 2012) confirm the softening of the 

frequency, near the transition between the PW and SM phases. 

Nonlinear effects crucial in the region of the phase transition. 

Other collective modes (scissors, quandrupole and compression

modes so far unexplored experimentally in SOC BEC gases)
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Emergence of Rotonic structure 

New futures emerge at large wave vectors in the Plane 

Wave phase:

consequence 

of violation of  parity and 

time reversal symmetry

)()( qq 

Exp: Si-Cong Ji et al., PRL 114, 105301 (2015)

Theory: Martone et al., PRA 86, 063621 (2012)



Roton gap decreases as 

Raman coupling is lowered:  

Onset of crystallization 

(transition to stripe phase) 

Emergence of Rotonic structure 

New futures emerge at large wave vectors in the Plane 

Wave phase:

consequence 

of violation of  parity and 

time reversal symmetry

)()( qq 

cr

Exp: Si-Cong Ji et al., PRL 114, 105301 (2015)

Theory: Martone et al., PRA 86, 063621 (2012)



LECTURE 1

- The quantum phases of a spin-orbit coupled mixture

of Bose-Einstein condensates

- Order parameter and nature of the phase transitions

- Sound and Dynamic properties of SOC BEC’s

LECTURE 2

- Superfluidity and rotation of SOC BEC’s

- Supersolidity and the novel Goldstone modes


