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Neutrino mass
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Role of massive neutrinos

astro-
physics

cosmo-
logy 

particle
physics

astro-
particle
physicsMassive neutrinos as 

“cosmic architects”

mν = 0 mν > 0 

Truck scale
~ 30 000 kg

Mass measurement:
new concepts

Toy car ~ 0,012 kg

Neutrino burst from SN 1987a

Understanding
astrophysical processes

Mass generation:
new concepts
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1930: Neutrino postulation and mass
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1930: Neutrino postulation and mass

mν  < 0.01mp ~ 10 MeV



Neutrino in the Standard Model
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Neutrino mixing, masses and oscillations
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 ➜ Eligio Lisi

Marco Pallavicini



Neutrino oscillations
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● 3 mixing angles: q12, q23, q13 
● 1 Dirac phase: d 

➢ possibly 2 Majorana phases α1,2

● 2 independent “splittings” 
Δm2 and lightest mass mlightest



● At least two neutrinos have mass
●

● n1 is lighter than n2 (matter effects)

● Which neutrino is the lightest?
● What in the mass of the lightest 

neutrino?
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What have we learned from oscillation 
data?

Δm21
2 =8⋅10−5 eV2 ,Δm32

2 =2.5⋅10−3 eV2
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How can we measure the neutrino 
masses?

Indirect (model-dependent) probes:

• Observational cosmology

• Search for 0νββ

Direct probes:

• Supernova ν time-of-flight
• Kinematics of weak decays

(3H β-decay, 163Ho electron capture) ➜ Ezio Previtali

 ➜ this lecture

 ➜ Aldo Ianni
 ➜ Matteo Viel

Enzo Branchini

Douglas Scott

Nicola Bartolo
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Observational cosmology

● Neutrinos are the most abundant matter particle in the universe
● Even if light they can impact the structure formation
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Observational cosmology
● ∑𝑚n < 120 meV (Planck)
● Future missions

– 10 meV precision

● Various ways to relax the 
limits:
– Beyond LCDM
– New neutrino physics
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Search for 0νββ decay
● Proof that neutrinos are 

Majorana particles and that 
Lepton number is violated

● Depends on the nuclear 
matrix calculation

● mbb < 79–180 meV (90% CL)
GERDA collaboration
Science 365, 1445 (2019)
PRL. 125, 252502 (2020)



Direct neutrino mass measurement

● No further assumptions needed, use E2 = p2c2 + m2c4   

 mn
2

● Time-of-flight measurements (n from supernova)
● Kinematics of weak decays / beta decays, e.g. T, 163Ho
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Overview: neutrino mass observables
Cosmology 0νββ decay β decay and EC
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● qqq
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Neutrino mass from β-decay kinematics
re

l. 
ra

te

electron kinetic energy

Experiment: Tritium identified early on 
as most suitable β-emitter

Theory: Starting from Fermi's 
seminal paper (Z. Phys., 1934)

Curran et al.



03.07.202323

Neutrino mass from β-decay kinematics
● Non-zero neutrino mass distorts the spectrum of electrons

– Independent from cosmology
– Independent from neutrino nature
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Neutrino mass from β-decay kinematics
● Non-zero neutrino mass distorts the spectrum of electrons
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– Independent from neutrino nature
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Neutrino mass from β-decay kinematics



Effective neutrino mass parameter

03.07.202326

dΓ
dE

=∑
i
|U ei|

2C⋅F (E ,Z )⋅(E+me)⋅(E0−E)⋅√(E+me)
2−me

2⋅√(E0−E)
2−mi

2

● Assume that we are measuring “far away” from E0

∑
i
|U ei|

2⋅(E0−E )⋅√1−
mi

2

(E0−E )
2

≈∑
i
|U ei|

2⋅(E0−E )⋅(1−
1
2
⋅

mi
2

(E0−E )
2 )

=(E0−E)⋅(1−1
2
⋅
∑
i
|U ei|

2⋅mi
2

(E0−E)2
)

≈√(E0−E )
2−∑

i
|U ei|

2⋅mi
2



Effective neutrino mass parameter
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● Incoherent sum of neutrino masses
● Effective squared mass of electron antineutrino 



Effective neutrino mass
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mb=√∑i |U ei|
2⋅mi

2
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Experimental challenges
● How to realize such experiment?

– Ultra-strong radioactive source (1011 decays/s)
– Excellent energy resolution (~ 1 eV, 0.005%)
– Low background (< 100 mcps)
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Experimental techniques
for direct ν-mass measurement

Calorimetry
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MAC-E filter technique

(momentum transformation 
without E-field)
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MAC-E filter technique

(momentum transformation 
without E-field)
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KATRIN:
Karlsruhe
Tritium
Neutrino
Experiment
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KATRIN’s epic voyage
Rhine

Mediterranean

ISAPP2023

Danube

Jochenstein Lock
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Measurement principle of KATRIN
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Measurement principle of KATRIN
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Measurement principle of KATRIN
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Measurement principle of KATRIN

Full system description & commissioning, JINST 16 (2021 ) T08015
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Systematic effects
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Calibration sources



● Scan: ~40 HV set points
● Scan length: 2-3 hours
● Analysis interval: 

– E0 - 40 eV, E0 + 135 eV

● Hundreds of scans per campaign

03.07.202342

Measurement strategy
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Beta-spectrum and neutrino mass

E0single tritium scan 
and fit

E0

  Beta spectrum: Rb(E,m2(ne))

  Experimental response: f(E-qU)

Ä

Calibration with electron 

gun and 83m Kr 

conversion electrons

03.07.2023
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Recent n-mass results

2nd camp.

KATRIN Collab, Nature Phys. 18 (2022) 16003.07.2023
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Confidence intervals construction

Phys. Part. Nucl. 46, 347–365
Phys. Rev. D 57, 3873–3889

KNM2KNM1
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Systematics
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KATRIN Data taking

1.
1 

eV
1.

1 
eV

0.
8 

eV
0.

8 
eV

KNM1-5
KNM1-5

~20% of all K
ATRIN data

~20% of all K
ATRIN data

EPJ C 80, 264 (2020)

PRL 123 (2019) 221802 
PRD 104 (2021) 012005 Nature Phys. 18 (2022) 160

Analysis of 5 scientific runs → to be published soonAnalysis of 5 scientific runs → to be published soon

Statistical sensitivity ~ 0.5 eV (90% CL)Statistical sensitivity ~ 0.5 eV (90% CL)
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● More statistics and lower systematics
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New data
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Challenge: Background

● Various sources of backgrounds identified ● All but one known sources are 
supressed

Challenge: Background



● Main component:
– Highly excited (Rydberg) atoms
– Uniformly distributed in the 

spectrometer

● Reducing volume –> reducing 
background
– Shifted analysing plane mode

03.07.202350

Background reduction



● Main component:
– Highly excited (Rydberg) atoms
– Uniformly distributed in the 

spectrometer

● Reducing volume –> reducing 
background
– Shifted analysing plane mode

● Factor 2 reduction of the 
background rate

03.07.202351

Background reduction

Eur.Phys.J.C 82 (2022) 3, 25803.07.202303.07.2023
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Historical overview
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● Better statistics: more tritium
– More scatterings → “Opaque” source

● “Different” tritium: atomic

● Differential measurement
– Better use of statistics
– Intrinsically less background
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What type of limitations are there?


