ISAPP2023: Neutrino physics , astrophysics and cosmology – SIF, Varenna, 26 June – 6 July 2023

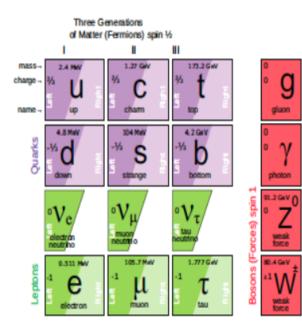
Basics on particle physics.

Structure of the

Standard Model of particle physics

Antonio Masiero University of Padua and INFN • By the end of the 20th century ... we have a comprehensive, fundamental theory of all observed forces of nature which has been tested and might be valid from the Planck rength scale [10⁻³³ cm.] to the edge of the universe [10⁺²⁸ cm.] **D. Gross 2007**

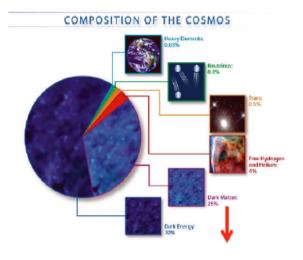
LECTURES I – II

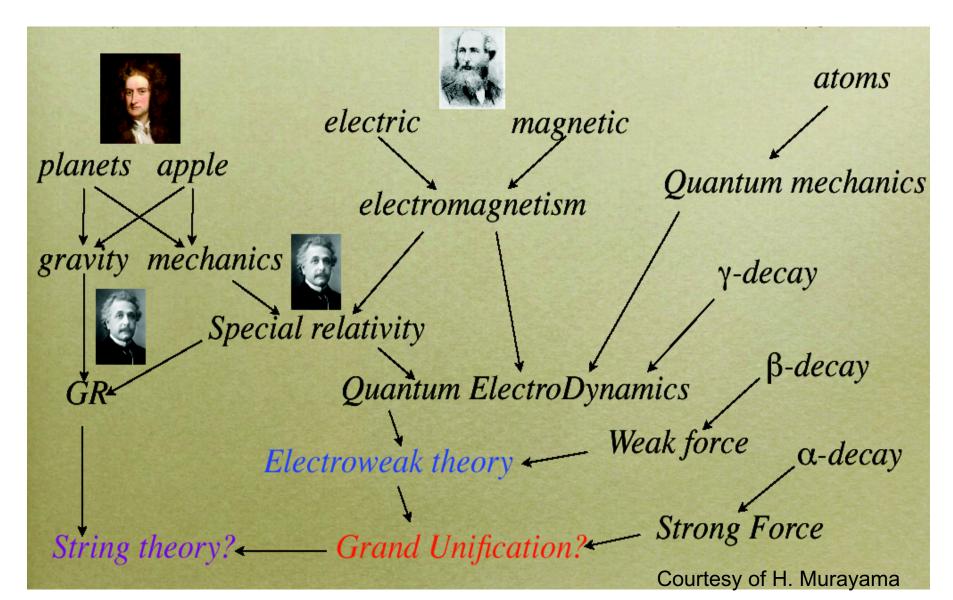

- Where the two infinities touch each other: a bird's-eye view of the Standard Models (SM) of particle physics and of cosmology
- Symmetries and fundamental interactions
- The **QED** and **QCD** lessons
- Spontaneous breaking of a (gauge) symmetry and the Higgs mechanism. The appearance of the electroweak energy scale.
- The structure of the **SM of particle physics**.
- Masses and mixings of the SM fermions. CP violation in the SM
- The exceptional **points of strength** of the SM

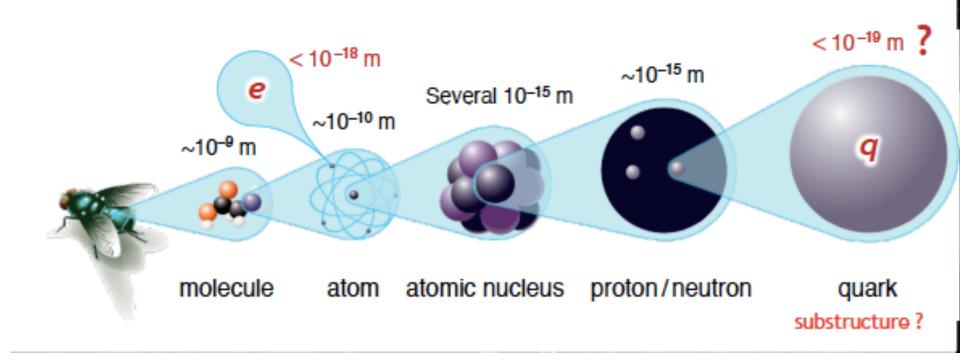
In this last decade → the triumph of the STANDARD

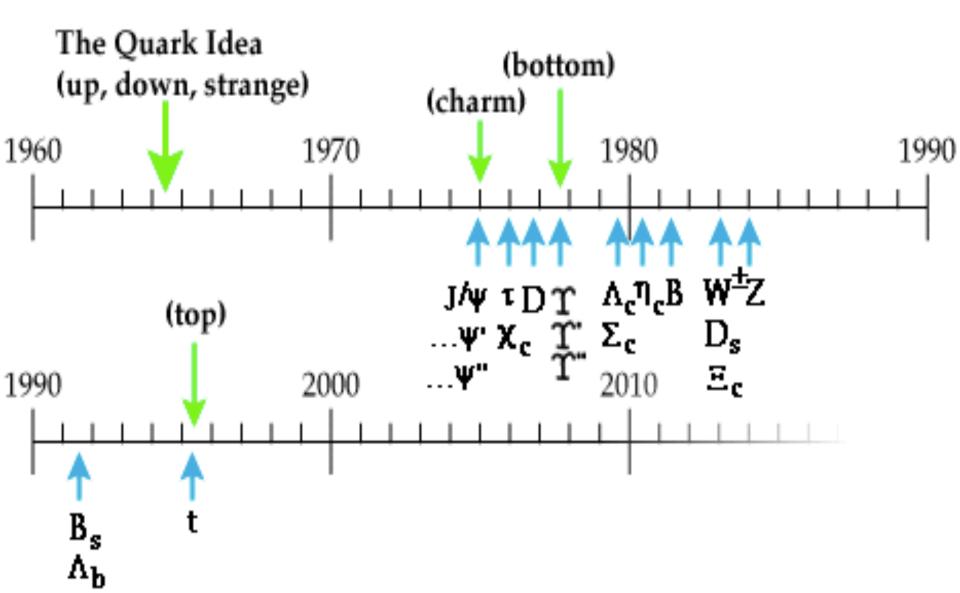
126 GeV 0 Hogs boson spin 0

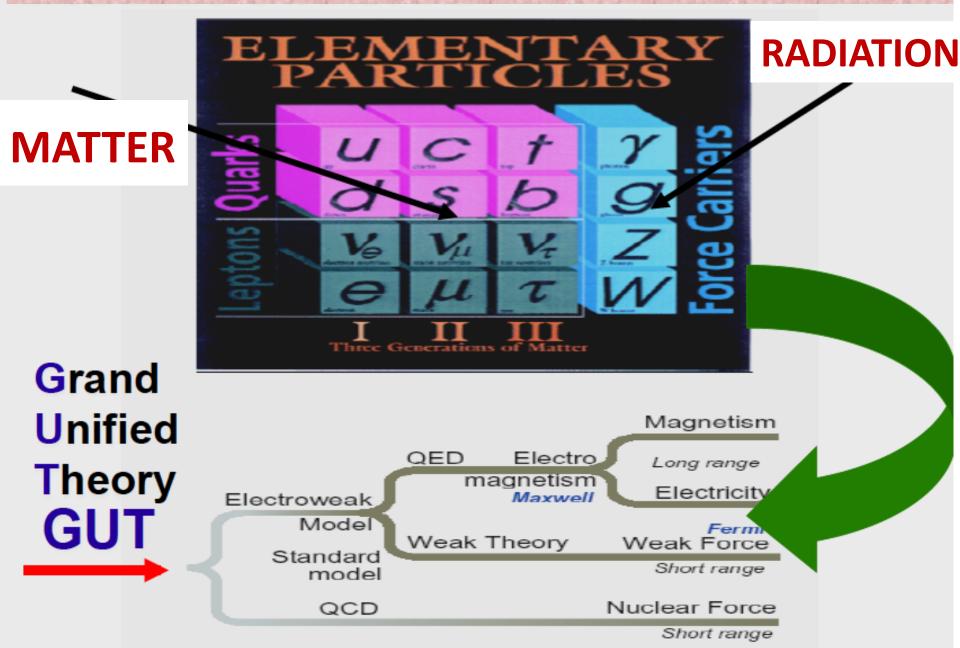
• PARTICLE STANDARD

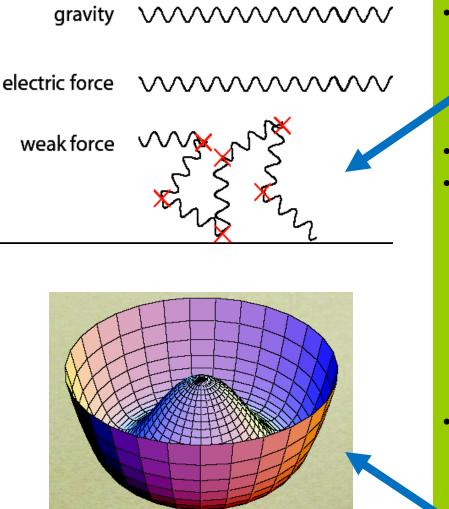

MODEL

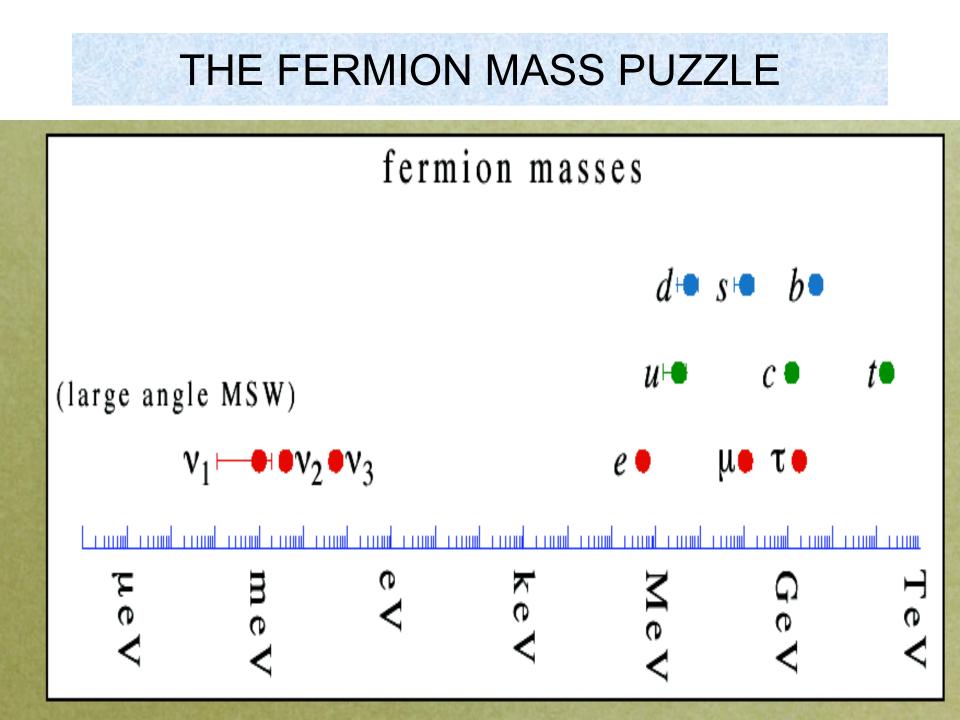

COSMOLOGY STANDARD

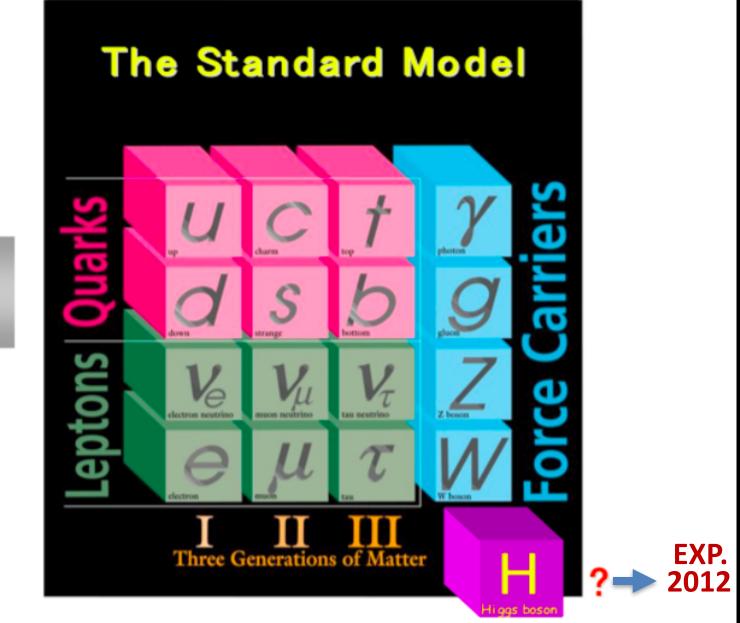

ACDM + "SIMPLE" INFLATION


UNIFICATION of FUNDAMENTAL INTERACTIONS


MICRO-COSMOS



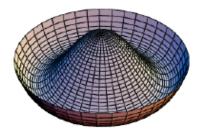

SM OF ELEMENTARY PARTICLES AND FUNDAMENTAL INTERACTIONS

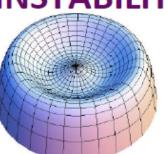


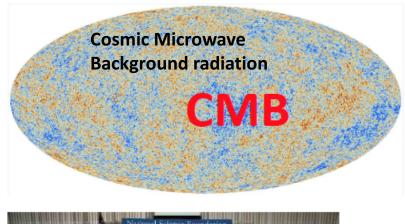
The HIGGS BOSON CONDENSATE

- "SOMETHING" fills the Universe: it "disturbs" Weak interactions making them SHORT-RANGED, while it does
 NOT affect gravity or electromagnetism.
 - WHAT IS IT?
 - Analogy with **SUPERCONDUCTIVITY**: in a superconductor the magnetic field gets repelled (**Meissner effect**) and penetrates only over the "penetration length", i.e. the magnetic field is shortranged \longrightarrow source which disturbs are the **boson condensates**, **Cooper pairs**.
- We are "swimming" in **Higgs Boson Condensates** its value at the minimum of its potential determines the masses of all particles!

Gravity ?

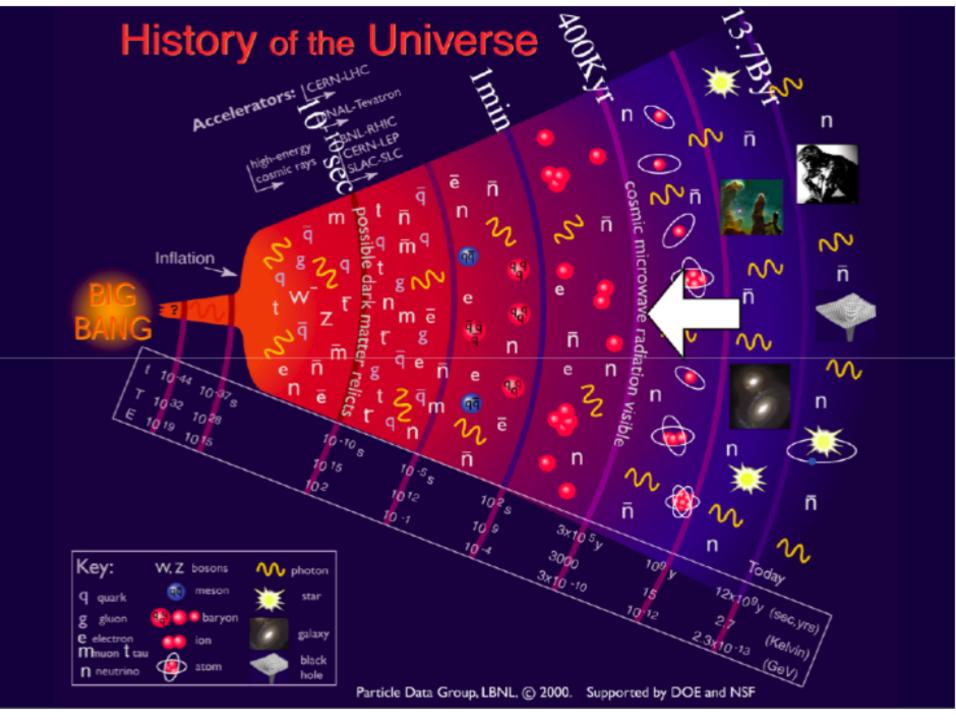

MACRO-COSMOS

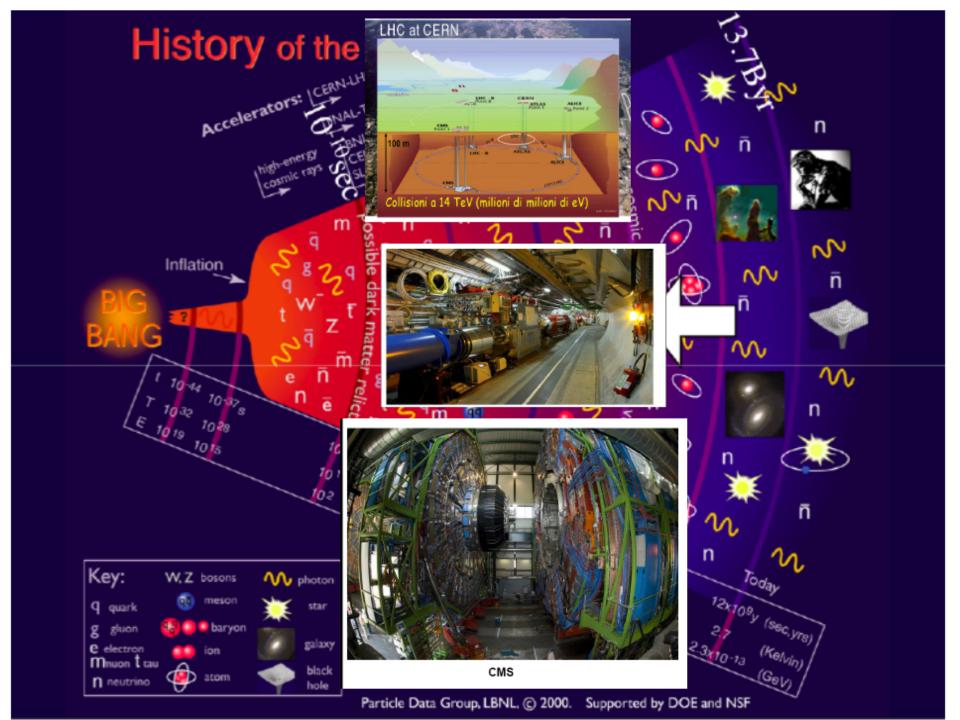

PARTICLE STANDARD MODEL

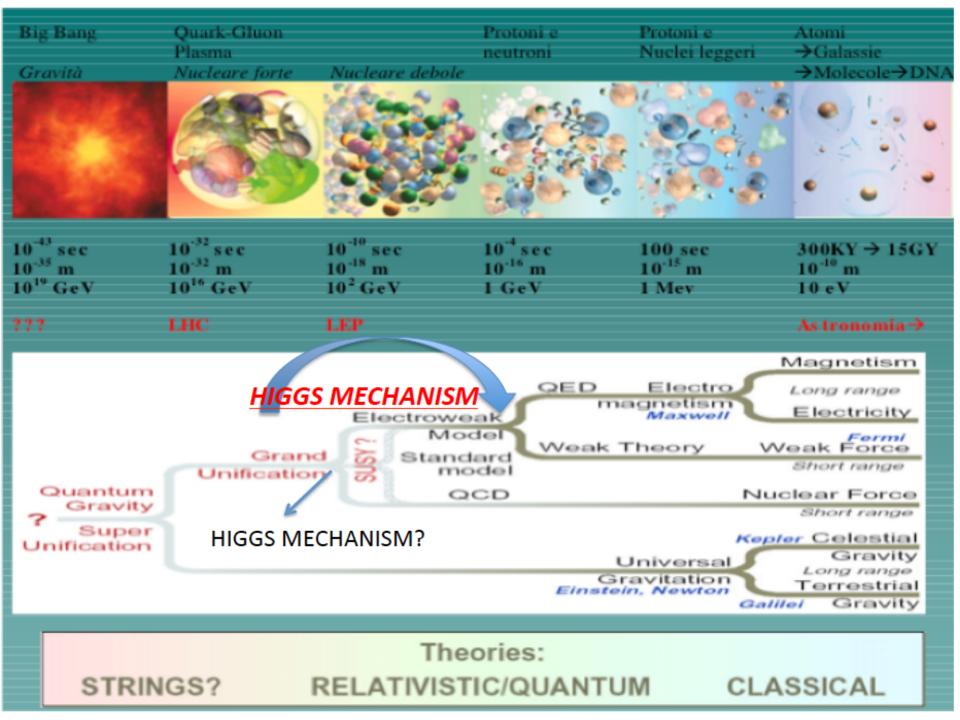

The Higgs boson and the destiny of the Universe

STABILITY INSTABILITY






COSMOLOGY STANDARD MODEL



Origin of Mass

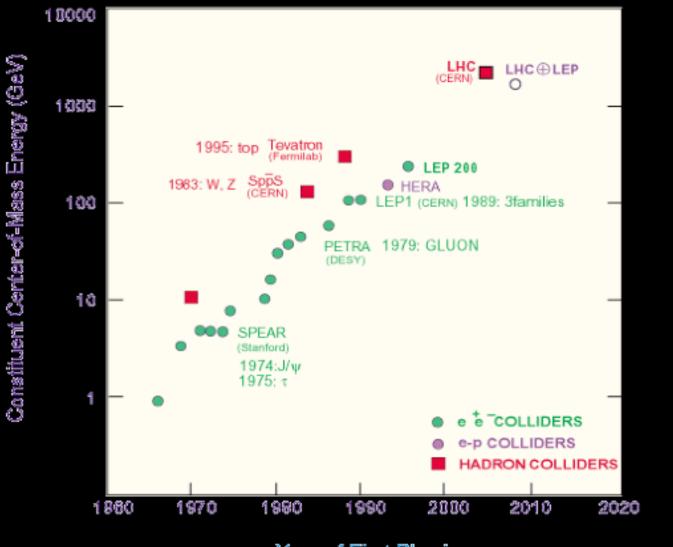
the Energy Frontier

Matter/Anti-matter Asymmetry

Dark Matter

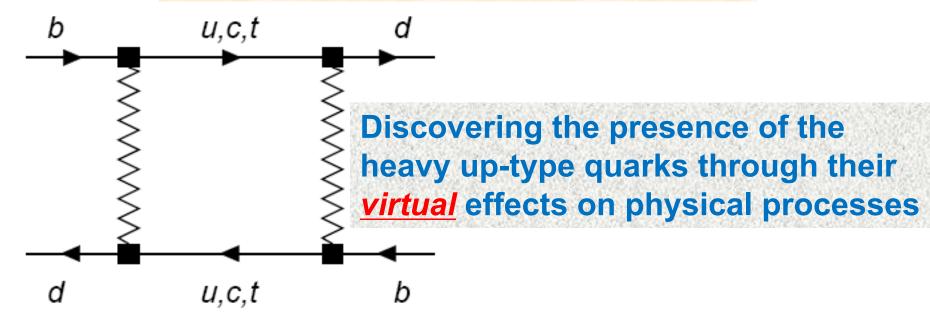
Origin of Universe

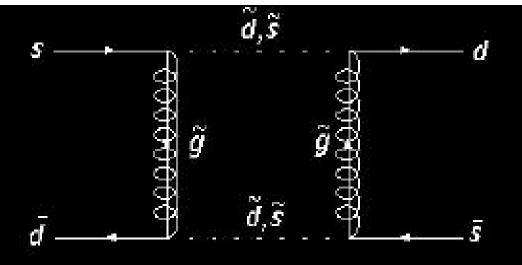
Unification of Forces


New Physics Beyond the Standard Model

Neutrino Physics

The Coemic Hor

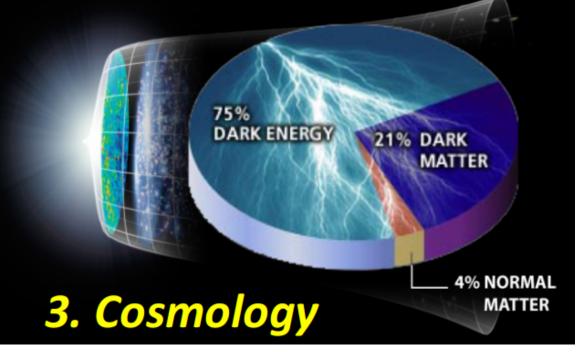

The Intensity Frontier


THE HIGH-ENERGY ROAD

Year of First Physics

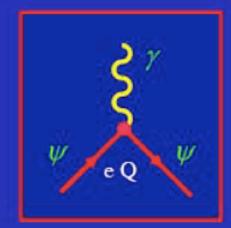
THE HIGH-INTENSITY ROAD

Looking for NEW PARTICLES through their virtual effects → discrepancies w.r.t. the SM predictions


THE ASTRO-PARTICLE PHYSICS ROAD

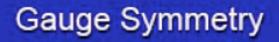
1. High-energy Universe: multi-messengers

2. Neutrino's


J. de Kleuver

1. STANDARD HODEL

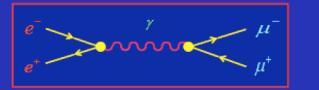
SPONTANEOUSLY BROKEN GAUGE THEORY SEEN STMMETRIES : SCONTINUOUS SCORTE DISCRETE (ex. PARITY) ex: $(i\beta - m) + (\pi) = 0$ $\mathcal{D} = \gamma^{\mu} \partial_{\mu}$ DIRAC EQ. - free electeon invariant under: 4(x) -> e'x y (x) K const. U(1) GeoZAL Symme. V(1) LOCAL (GALGE) SYMM : & const -> x(x) zobotion is a function of x(t, x, to exporce the local U(1) symmi Dy -> Dy = Dy - ie Ay Graviant devir. -> Compensations Vector (grage) field Ay (x) - Ay (2) - ie Dy 2 (x) (i D-ve) y(x)=0 invar. under local U(1)

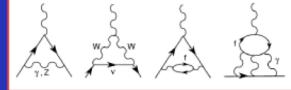

$$\mathcal{L} = \overline{\psi} (i \gamma^{\mu} D_{\mu} - m) \psi$$
$$= \overline{\psi} (i \gamma^{\mu} \partial_{\mu} - m) \psi - e Q A_{\mu} (\overline{\psi} \gamma^{\mu} \psi)$$

Kinetic term:

$$\mathcal{L}_{K} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \qquad \Longrightarrow \qquad \partial_{\mu} F^{\mu\nu} = e \mathcal{Q} \ (\bar{\psi} \gamma^{\nu} \psi) \qquad \text{Maxwell}$$

Mass term: $\begin{bmatrix} \exp: & m_{\gamma} < 1 \cdot 10^{-18} \text{ eV} \end{bmatrix}$ $\mathcal{L}_{M} = \frac{1}{2} m_{\gamma}^{2} A^{\mu} A_{\mu} \qquad \text{Not Gauge Invariant} \qquad \blacksquare \qquad m_{\gamma} = 0$




The Standard Model

Successful Theory

Anomalous Magnetic Moment

$$\mu_{l} \equiv g_{l} \frac{e}{2m_{l}}$$
$$\mu_{l} \equiv \frac{1}{2}(g_{l}-2)$$

The motion of a classical particle of mass m and charge e with angular momentum

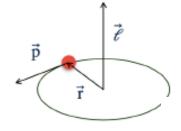
$$\vec{\ell} = \vec{r} \times \vec{p}$$

generates the (orbital) magnetic moment :

$$\vec{\mu}_\ell = \frac{e}{2m}\,\vec{\ell}$$

In 1925 Goudsmit & Uhlenbeck propose that the electron has an "internal rotation" characterised by a "spin" s and an associated magnetic moment, like a tiny bar magnet:

$$\vec{\mu}_s = g \, \frac{e}{2m} \, \vec{s}$$


with g = 2, not 1! Very strange, but worked.

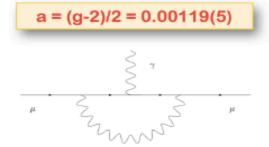
 1928: Dirac's equation unifies the two fields that revolutionized XXth century physics: special relativity and quantum mechanics.

The Dirac equation predicts that a unit of spin interacts with a magnetic field twice as much as a unit of orbital angular momentum: g=2!

Great triumph for the Dirac equation, but not the end of the story...

 1948: With improvements in experimental techniques, Kusch & Foley measure g ≠ 2! The electron "magnetic moment anomaly" is:

a = (g-2)/2 = 0.00119(5)

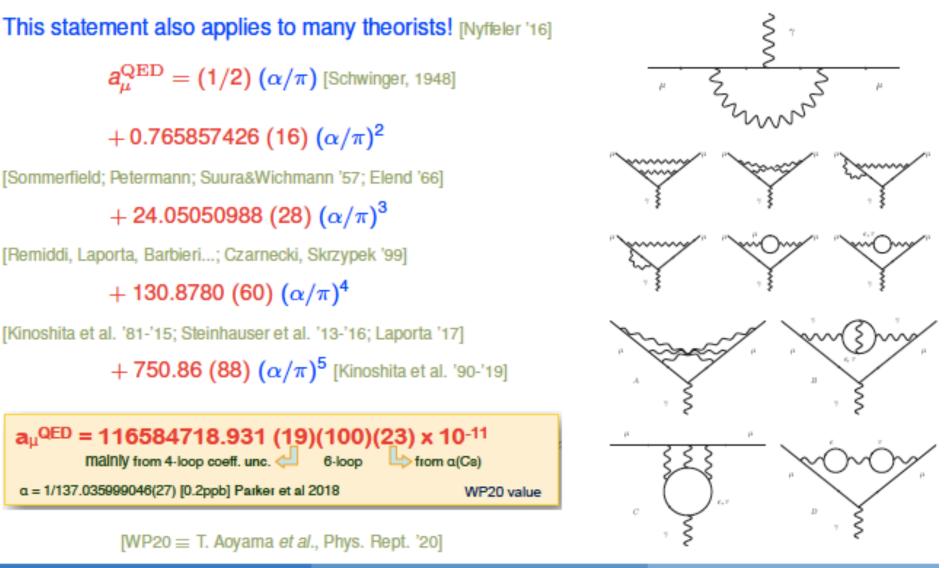

What happened?? A relativistic quantum field theory of electromagnetism, ie Quantum ElectroDynamics (QED), is needed!

QED contribution

1948: Schwinger, using Quantum ElectroDynamics (QED), predicts

 $a = (g-2)/2 = \alpha/(2\pi) = 0.00116$

in perfect agreement with Kusch & Foley's measurement

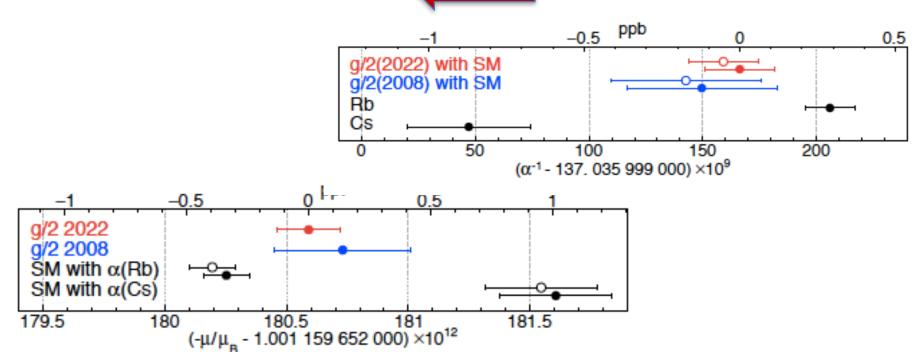

- Tremendous quantitative triumph for relativistic QFT (QED).
- Today we keep studying the lepton-photon vertex: —

$$\Gamma^{\mu} = ie[\gamma^{\mu}F_1(q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2m}F_2(q^2) + \ldots]$$

$$F_1(0) = 1$$
 $F_2(0) = a$

"g – 2 is not an experiment: it is a way of life."

[John Adams (Head of the Proton Synchrotron at CERN (1954-1961)]



Measurement of the Electron Magnetic Moment

X. Fan,^{1,2,*} T. G. Myers,² B. A. D. Sukra,² and G. Gabrielse^{2,†}

¹Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA ²Center for Fundamental Physics, Northwestern University, Evanston, Illinois 60208, USA (Dated: September 28, 2022)

The electron magnetic moment in Bohr magnetons, $-\mu/\mu_B = 1.001\,159\,652\,180\,59\,(13)\,[0.13\,\text{ppt}]$, is consistent with a 2008 measurement and is 2.2 times more precise. The most precisely measured property of an elementary particle agrees with the most precise prediction of the Standard Model (SM) to 1 part in 10¹², the most precise confrontation of all theory and experiment. The SM test will improve further when discrepant measurements of the fine structure constant α are resolved, since the prediction is a function of α . The magnetic moment measurement and SM theory together predict $\alpha^{-1} = 137.035\,999\,166\,(15)\,[0.11\,\text{ppb}]$

QUANTUM CHRONODYNAMICS $\mathbf{q} \equiv \begin{bmatrix} \mathbf{q} \\ q \\ q \end{bmatrix}$ $\mathcal{L} = \overline{\mathbf{q}} \left[i \gamma^{\mu} \partial_{\mu} - m \right] \mathbf{q}$ FREE QUARKS: $\mathbf{q} \rightarrow \mathbf{U} \mathbf{q}$; $\overline{\mathbf{q}} \rightarrow \overline{\mathbf{q}} \mathbf{U}^{\dagger}$ SU(3) Colour Symmetry: $\mathbf{U} \mathbf{U}^{\dagger} = \mathbf{U}^{\dagger} \mathbf{U} = \mathbf{1}$; $\det \mathbf{U} = \mathbf{1}$; $\mathbf{U} = \exp\left\{i\frac{\lambda^{a}}{2}\theta_{a}\right\}$ Gauge Principle: Local Symmetry $\theta_a = \theta_a(x)$ $\mathbf{D}^{\mu}\mathbf{q} = (\mathbf{I}_{3} \partial^{\mu} + i \mathbf{g}_{a} \mathbf{G}^{\mu}) \mathbf{q} \rightarrow \mathbf{U} \mathbf{D}^{\mu}\mathbf{q}$ $\mathbf{D}^{\mu} \rightarrow \mathbf{U} \ \mathbf{D}^{\mu} \ \mathbf{U}^{\dagger} \qquad ; \qquad \mathbf{G}^{\mu} \rightarrow \mathbf{U} \ \mathbf{G}^{\mu} \ \mathbf{U}^{\dagger} + \frac{\mathbf{I}}{\mathbf{I}} (\partial^{\mu} \mathbf{U}) \ \mathbf{U}^{\dagger}$ $[\mathbf{G}^{\mu}]_{\alpha\beta} \equiv \frac{1}{2} (\lambda^{a})_{\alpha\beta} \ \mathbf{G}^{\mu}_{a}(\mathbf{x})$ 8 Gluon Fields

The Standard Model

Kinetic Term:

$$\mathbf{G}^{\mu\nu} \equiv -\frac{i}{g_s} \left[\mathbf{D}^{\mu}, \mathbf{D}^{\nu} \right] = \partial^{\mu} \mathbf{G}^{\nu} - \partial^{\nu} \mathbf{G}^{\mu} + i g_s \left[\mathbf{G}^{\mu}, \mathbf{G}^{\nu} \right] \rightarrow \mathbf{U} \mathbf{G}^{\mu\nu} \mathbf{U}^{\dagger}$$

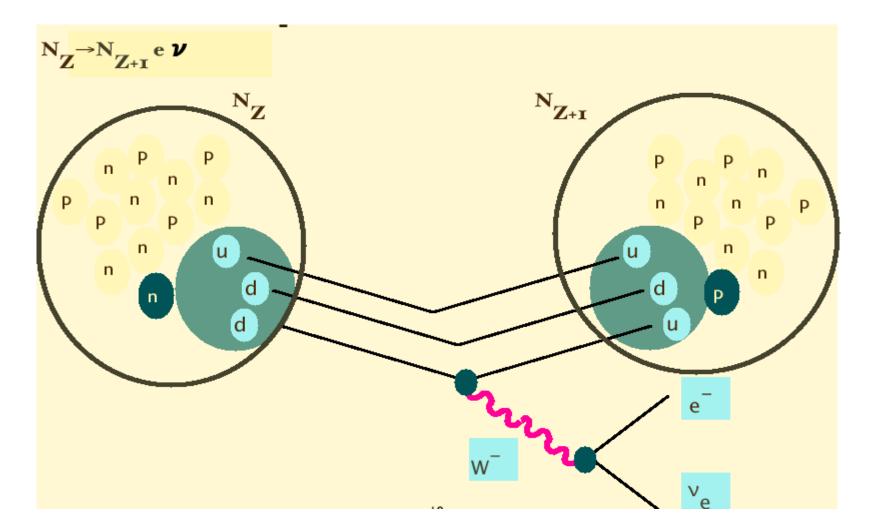
$$\mathbf{G}^{\mu\nu} \equiv \frac{\lambda^a}{2} G_a^{\mu\nu} \quad ; \quad G_a^{\mu\nu} = \partial^{\mu} G_a^{\nu} - \partial^{\nu} G_a^{\mu} - g_s f^{abc} G_b^{\mu} G_c^{\nu}$$

$$\mathcal{L}_{K} = -\frac{1}{2} \operatorname{Tr} \left(\mathbf{G}^{\mu\nu} \mathbf{G}_{\mu\nu} \right) = -\frac{1}{4} G_{a}^{\mu\nu} G_{\mu\nu}^{a}$$

Mass Term: $\mathcal{L}_M = \frac{1}{2} m_G^2 G_a^\mu G_\mu^a$

Not Gauge Invariant

$$\rightarrow$$


 $m_G = 0$

Massless Gluons

The Standard Model

NUCLEUS β-DECAY

(Nuclear) WEAK Interactions

EXPERIMENTAL FACTS

Three Families

Family Structure

$$\begin{bmatrix} v_l & q_u \\ l^- & q_d \end{bmatrix} = \left\{ \begin{pmatrix} v_l \\ l^- \end{pmatrix}_L, (v_l)_R, l^-_R \right\} ; \left\{ \begin{pmatrix} q_u \\ q_d \end{pmatrix}_L, (q_u)_R, (q_d)_R \right\}$$

 $\begin{vmatrix} v_e & u \\ e^- & d' \end{vmatrix} , \begin{vmatrix} v_\mu & c \\ u^- & s' \end{vmatrix} , \begin{vmatrix} v_\tau & t \\ \tau^- & b' \end{vmatrix}$

Charged Currents

 $W^{\pm} \begin{cases} \text{Left-handed Fermions only} \\ \text{Flavour Changing: } v_l \Leftrightarrow l \ , \ q_u \Leftrightarrow q_d \end{cases}$

Neutral currents

Universality

 γ , Z Flavour Conserving

(Family - Independent Couplings)

 $(\nu_1)_R$?

The Standard Model

$SU(2)_L \otimes U(1)_Y$	Fields	$\psi_1(x)$	$\psi_2(x)$	$\psi_3(x)$
GAUGE	Quarks	$\begin{pmatrix} q_u \\ q_d \end{pmatrix}_L$	$(q_u)_R$	$(q_d)_R$
THEON	Leptons	$ \begin{pmatrix} \boldsymbol{v}_l \\ l^- \end{pmatrix}_{\!$	$(\nu_l)_R$	$(l^-)_R$

Free Lagrangian for Massless Fermions:

$$\mathcal{L}_0 = \sum_j i \, \overline{\psi}_j \, \gamma^\mu \, \partial_\mu \psi_j$$

SU (2)_L \otimes U (1)_Y Flavour Symmetry: $\psi_{1} \rightarrow e^{iy_{1}\beta} U_{L} \psi_{1} ; \psi_{2} \rightarrow e^{iy_{2}\beta} \psi_{2} ; \psi_{3} \rightarrow e^{iy_{3}\beta} \psi_{3}$ $\overline{\psi}_{1} \rightarrow \overline{\psi}_{1} U_{L}^{\dagger} e^{-iy_{1}\beta} ; \overline{\psi}_{2} \rightarrow \overline{\psi}_{2} e^{-iy_{2}\beta} ; \overline{\psi}_{3} \rightarrow \overline{\psi}_{3} e^{-iy_{3}\beta}$ 4 Massless Gauge Bosons $W_{\mu}^{\pm} , W_{\mu}^{3} , B_{\mu}^{0}$ The Standard Model A. Pich - ISAPP 2010

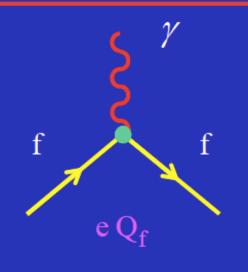
CHARGED

$$W_{\mu} \equiv \frac{\vec{\sigma}}{2} \cdot \vec{W}_{\mu} = \frac{1}{2} \begin{pmatrix} W_{\mu}^3 & \sqrt{2} W_{\mu}^{\dagger} \\ \sqrt{2} W_{\mu} & -W_{\mu}^3 \end{pmatrix} ; \quad W_{\mu} \equiv \frac{1}{\sqrt{2}} (W_{\mu}^1 + i W_{\mu}^2)$$

$$\mathcal{L}_{cc} = -\frac{g}{2\sqrt{2}} W^{\dagger}_{\mu} \left[\overline{q}_{u} \gamma^{\mu} (1-\gamma_{5}) q_{d} + \overline{\nu}_{l} \gamma^{\mu} (1-\gamma_{5}) l \right] + \text{h.c.}$$

Quark / Lepton Universality ; Left-Handed Interaction

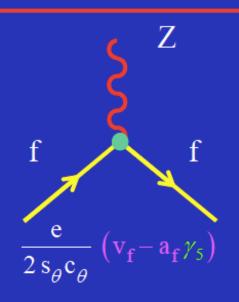
NEUTRAL
CURRENTS


$$\begin{pmatrix}
W_{\mu}^{3} \\
B_{\mu}
\end{pmatrix} = \begin{pmatrix}
\cos \theta_{W} & \sin \theta_{W} \\
-\sin \theta_{W} & \cos \theta_{W}
\end{pmatrix} \begin{pmatrix}
Z_{\mu} \\
A_{\mu}
\end{pmatrix}$$

$$g \sin \theta_W = g' \cos \theta_W = e$$
 ; $y_1 = Q_u - \frac{1}{2} = Q_d + \frac{1}{2}$; $y_2 = Q_u$; $y_3 = Q_d$

$$\mathcal{L}_{NC} = -\boldsymbol{e} \ \boldsymbol{A}_{\mu} \sum_{j} \ \boldsymbol{\overline{\psi}}_{j} \ \boldsymbol{\gamma}^{\mu} \ \boldsymbol{Q}_{j} \ \boldsymbol{\psi}_{j} + \mathcal{L}_{NC}^{Z}$$
$$Q_{1} = \begin{pmatrix} Q_{u} & 0 \\ 0 & Q_{d} \end{pmatrix} ; \quad Q_{2} = Q_{u} ; \quad Q_{3} = Q_{d}$$

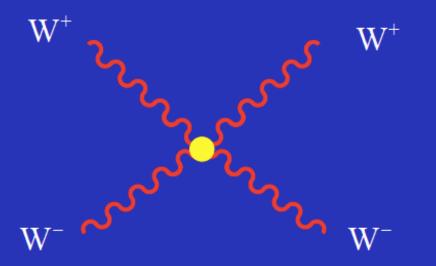
Electroweak Unification


The Standard Model

NEUTRAL

CURRENTS

$$a_f = T_3^f = \pm \frac{1}{2}$$
$$v_f = T_3^f \left(1 - 4 |Q_f| \sin^2 \theta_W\right)$$




 $y(v_R) = Q_v = 0$ \implies No v_R Interactions

Sterile Neutrinos

The Standard Model

GAUGE SELF-INTERACTIONS

 W^+

A. Pich - ISAPP 2010

γ, Z **Μ**

PROBLEM WITH MASS SCALES

Gauge Symmetry

 $m_{\gamma} = 0$ Good $M_{w} = M_{z} = 0$ Bad!

 $M_{W} = 80.40 \text{ GeV}$ $M_{Z} = 91.19 \text{ GeV}$

Moreover $\mathcal{L}_{m_f} = -m_f \ \overline{f} \ f = -m_f \ (\overline{f}_L \ f_R + \ \overline{f}_R \ f_L)$ Also Forbidden by Gauge Symmetry \longrightarrow $m_f = 0$ $\forall \ f$ All Particles Massless

The Standard Model

= interaction term: e Tyon Ar eletron - photon frelle Fur Fr > Kinetic Form for the photon R GAUGE STRNETRY RENDROHALIZABILITY -> all infinities reabsorbable in a finite number of free parameters HASS LESS CAUGO BOSONS SPONTANEOUS ST MMETRY BREAKING L' (laganupian) respects a symme, but the vacour of the theory does NOT respect it ex: V = p2 qq + 2 (qq +) Vinvar, under Amp e' q(n) if p2 <0 > <0/0> ≠0 Vacuum is NOT Va) invaniant order paren transiti

G - G Spont. break. if G global -> generators of G/G! 6 Goldstone bosonic (massless if G LOCAL -> HIGGS MECHANISH Goldstone bosons " eater up " by the gauge means of 6/61 to because their tongitalial comprents > gauge means of G/G' become MASSIVE, their mass heing a so/p/0>=0 and to their gauge couple coust.

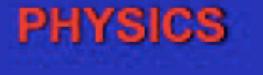
 $= SU(3)_{e} \otimes SU(2)_{e} \otimes U(1)_{e}$ GST. RODEL 8 glusus Wi, Wz, Ws Br hyperchar hyperchar CAUDE STMOLETRY MATTER $\begin{pmatrix} u \\ d \end{pmatrix}, \quad (u^{\epsilon})_{L} \quad (d^{\epsilon})_{L} \quad \begin{pmatrix} \gamma_{e} \\ e \end{pmatrix} \quad (e^{\epsilon})_{L}$ FERHIONS SU(3) 3 3 3 SU(z), z = 1 (U(1), 1/6 -2/3 +1/3 - 12- $Q = T_3 + Y$ Lint = g, J' Br + ge Ji A Wri + go Ja Apa i = 1, 2, 3 $J_{r}^{i} = (\overline{u} \neq)_{L} Y_{r} \left(\frac{\overline{c}_{i}}{2} \right) \left(\frac{u}{2} \right) + \left(\overline{e} \neq \overline{e} \right)_{L} Y_{r} \left(\frac{\overline{c}_{i}}{2} \right) \left(\frac{u}{e} \right)_{i}$ $W_{\pm}^{P} = \frac{1}{\sqrt{2}} \left(W_{4}^{P} \mp i W_{2}^{P} \right)$ As long is Gon unhorsten > all gauge bosons + fermions SIC MASSLESS

Spontaneous
Symmetry Breaking

$$\phi(x) = \begin{pmatrix} \phi^{(+)}(x) \\ \phi^{(0)}(x) \end{pmatrix} = \exp\left\{i\frac{\vec{t}}{2} \cdot \vec{\theta}(x)\right\} \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + H(x) \end{pmatrix}$$

$$\mathcal{L}(\phi) = (\mathbf{D}_{\mu}\phi)^{\dagger} \mathbf{D}^{\mu}\phi - \mu^{2} \phi^{\dagger}\phi - h (\phi^{\dagger}\phi)^{2} ; \quad \mu^{2} < 0 \qquad \left| \left\langle 0 \right| \phi^{(0)} \left| 0 \right\rangle \right| - \sqrt{\frac{-\mu^{2}}{2h}} \equiv \frac{v}{\sqrt{2}}$$
$$\mathbf{D}^{\mu}\phi = \left[\partial^{\mu} - i g \mathbf{W}^{\mu} - i g' y_{\phi} B^{\mu} \right] \phi ; \quad \mathbf{W}^{\mu} = \frac{\vec{\tau}}{2} \cdot \vec{W}^{\mu} \qquad y_{\phi} = \mathcal{Q}_{\phi} - \mathbf{T}_{3} = \frac{1}{2}$$

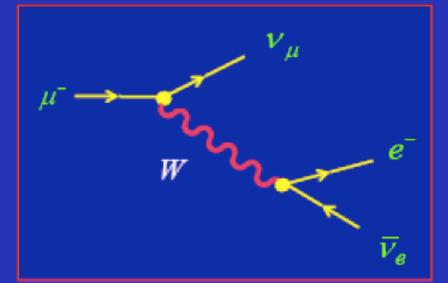
Unitary Gauge:
$$(D_{\mu}\phi)^{\dagger} D^{\mu}\phi \xrightarrow{\bar{\theta}=0} \frac{1}{2}\partial_{\mu}H \partial^{\mu}H + \frac{g^{2}}{4}(v+H)^{2}\left\{W_{\mu}^{\dagger}W^{\mu} + \frac{1}{2\cos^{2}\theta_{W}}Z_{\mu}Z^{\mu}\right\}$$


$$M_Z \cos \theta_W = M_W = \frac{1}{2} v g$$

HIGGS MECHANISM

Bosonic Degrees of Freedom

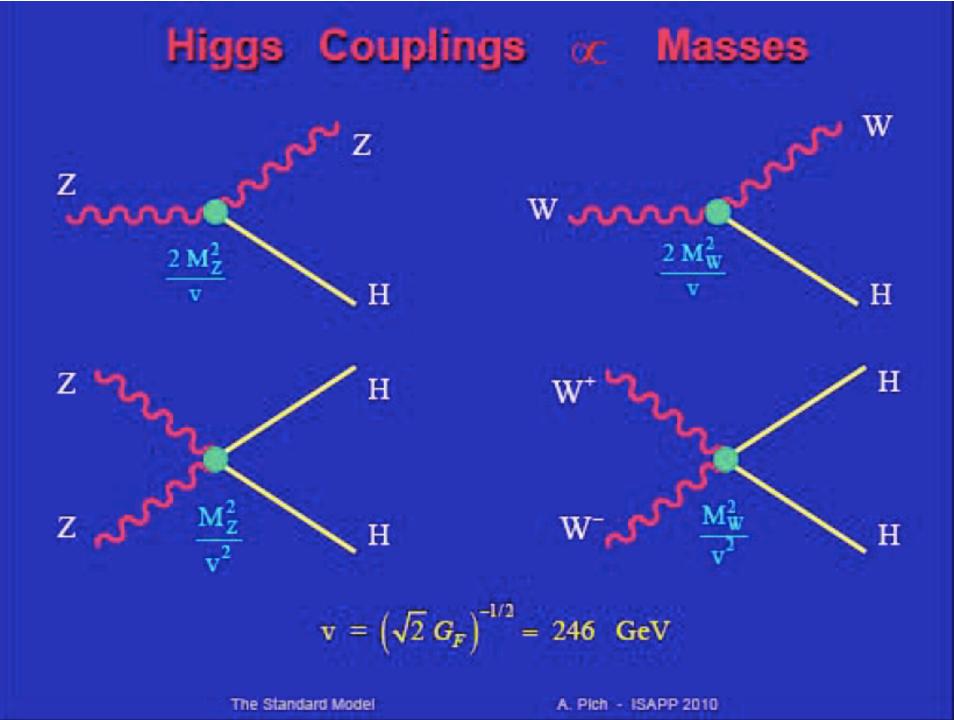
Massless 3 x 2 polarizations = 6 3 Goldstones SSB Massive 3 x 3 polarizations = 9


The Standard Model

$$M_Z \cos \theta_W = M_W = \frac{1}{2} v g$$

 $M_Z = 91.1875 \text{ GeV} > M_W = 80.399 \text{ GeV} \implies \sin^2 \theta_W = 1 - \frac{M_W^2}{M_Z^2} = 0.223$

$$\frac{g^2}{M_W^2 - q^2} \approx \frac{g^2}{M_W^2} \equiv 4\sqrt{2} G_F$$

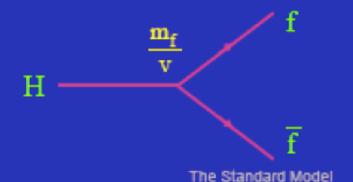

$$\frac{1}{\tau_{\mu}} \equiv \Gamma = \frac{G_F^2 m_{\mu}^3}{192 \pi^3}$$

 $\sin^2 \theta_W = 0.215$

 $v = (\sqrt{2} G_F)^{-1/2} = 246 \text{ GeV}$

$$G_F = 1.16637 \times 10^{-5} \text{ GeV}^{-2}$$
$$g = \frac{e}{\sin \theta_W} \quad , \quad M_W$$

Scalar - Fermion Couplings allowed by Gauge Symmetry

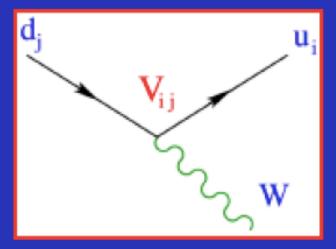

$$\mathcal{L}_{\Upsilon} = (\overline{q}_{u}, \overline{q}_{d})_{L} \left[c^{(d)} \begin{pmatrix} \phi^{(+)} \\ \phi^{(0)} \end{pmatrix} (q_{d})_{R} + c^{(u)} \begin{pmatrix} \phi^{(0)\dagger} \\ -\phi^{(+)\dagger} \end{pmatrix} (q_{u})_{R} \right] + (\overline{v}_{l}, \overline{l})_{L} c^{(l)} \begin{pmatrix} \phi^{(+)} \\ \phi^{(0)} \end{pmatrix} l_{R} + \mathbf{h.c.}$$

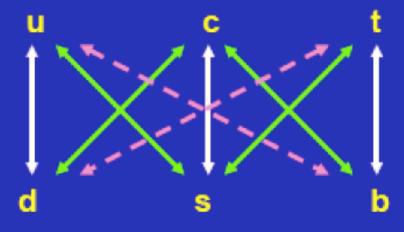
$$SSB$$

$$\mathcal{L}_{\Upsilon} = - \left(1 + \frac{H}{v} \right) \left\{ m_{q_{d}} \ \overline{q}_{d} \ q_{d} + m_{q_{u}} \ \overline{q}_{u} \ q_{u} + m_{l} \ \overline{l} \ l \right\}$$

Fermion Masses are New Free Parameters

$$\begin{bmatrix} m_{q_d}, m_{q_u}, m_l \end{bmatrix} = - \begin{bmatrix} c^{(d)}, c^{(u)}, c^{(l)} \end{bmatrix} \frac{v}{\sqrt{2}}$$


Couplings Fixed: g_{Hff} =


$$\mathcal{L}_{NC}^{Z} = -\frac{e}{2\sin\theta_{W}\cos\theta_{W}} Z_{\mu} \sum_{f} \overline{f} \gamma^{\mu} \left[v_{f} - a_{f} \gamma_{5}\right] f$$

Flavour Conserving Neutral Currents

$$\mathcal{L}_{\rm CC} = -\frac{g}{2\sqrt{2}} W^{\dagger}_{\mu} \left[\sum_{ij} \overline{u}_i \gamma^{\mu} (1-\gamma_5) V_{ij} d_j + \sum_l \overline{v}_l \gamma^{\mu} (1-\gamma_5) l \right] + \text{h.c.}$$

Flavour Changing Charged Currents

The Standard Model

QUARK MIXING MATRIX

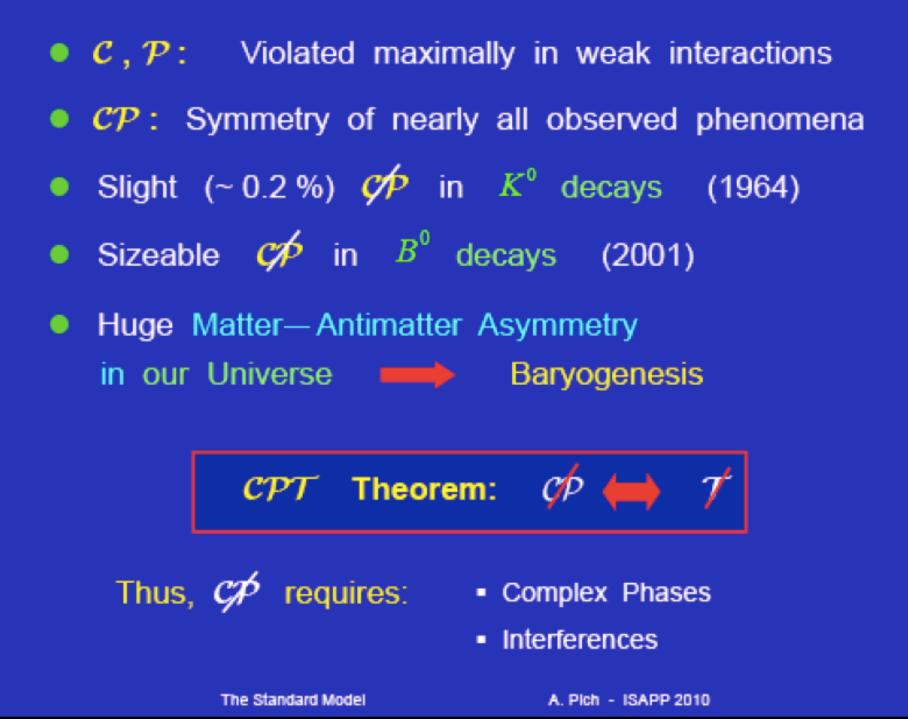
• Unitary $N_{\rm G} \times N_{\rm G}$ Matrix: $N_{\rm G}^2$ parameters ${f V} \cdot {f V}^\dagger = {f V}^\dagger \cdot {f V} = {f 1}$

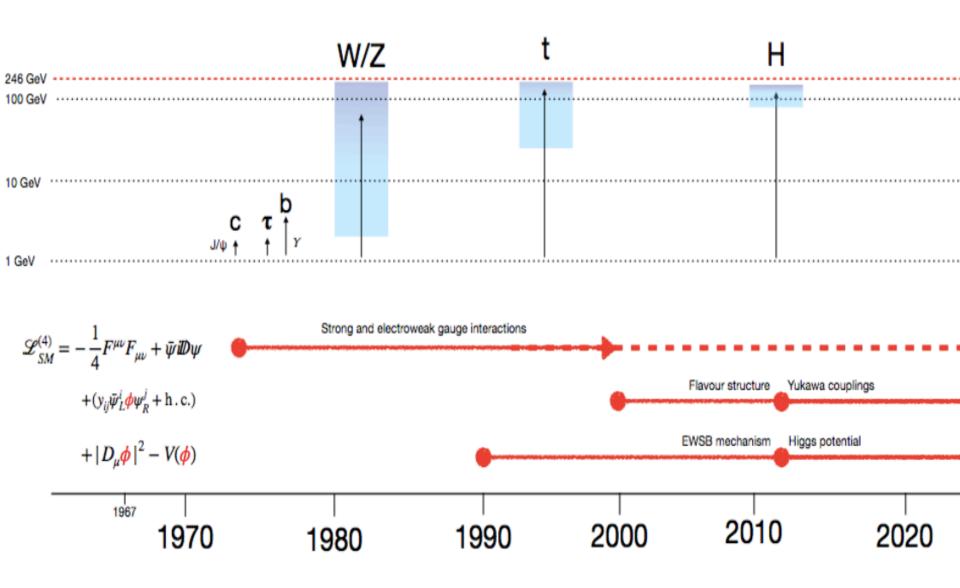
• $2N_{\rm G} - 1$ arbitrary phases:

$$u_{i} \rightarrow e^{i\phi_{i}} u_{i} ; d_{j} \rightarrow e^{i\theta_{j}} d_{j} \longrightarrow V_{ij} \rightarrow e^{i(\theta_{j} - \phi_{i})} V_{ij}$$

$$V_{ij}$$
Physical Parameters: $\frac{1}{2}N_{\rm G}(N_{\rm G}-1)$ Moduli; $\frac{1}{2}(N_{\rm G}-1)(N_{\rm G}-2)$ phases

• $N_f = 2$: 1 angle, 0 phases (Cabibbo)


$$\mathbf{V} = \begin{bmatrix} \cos \theta_{\rm C} & \sin \theta_{\rm C} \\ -\sin \theta_{\rm C} & \cos \theta_{\rm C} \end{bmatrix} \longrightarrow \text{No } \mathcal{QP}$$

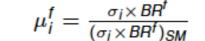

• $N_f = 3$: 3 angles, 1 phase (CKM) $c_{ij} \equiv \cos \theta_{ij}$; $s_{ij} \equiv \sin \theta_{ij}$

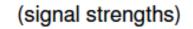
$$\mathbf{V} = \begin{bmatrix} c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i\delta_{13}} \\ -s_{12} c_{23} - c_{12} s_{23} s_{13} e^{i\delta_{13}} & c_{12} c_{23} - s_{12} s_{23} s_{13} e^{i\delta_{13}} & s_{23} c_{13} \\ s_{12} s_{23} - c_{12} c_{23} s_{13} e^{i\delta_{13}} & -c_{12} s_{23} - s_{12} c_{23} s_{13} e^{i\delta_{13}} & c_{23} c_{13} \end{bmatrix}$$

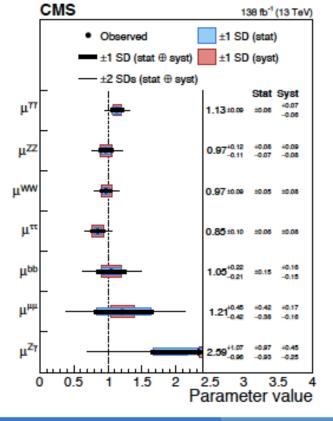
$$\approx \begin{bmatrix} 1-\lambda^2/2 & \lambda & A\lambda^3 (\rho-i\eta) \\ -\lambda & 1-\lambda^2/2 & A\lambda^2 \\ A\lambda^3 (1-\rho-i\eta) & -A\lambda^2 & 1 \end{bmatrix} + \mathcal{O}(\lambda^4)$$

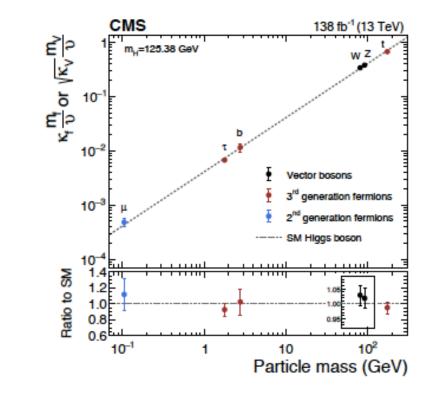
The Standard Model

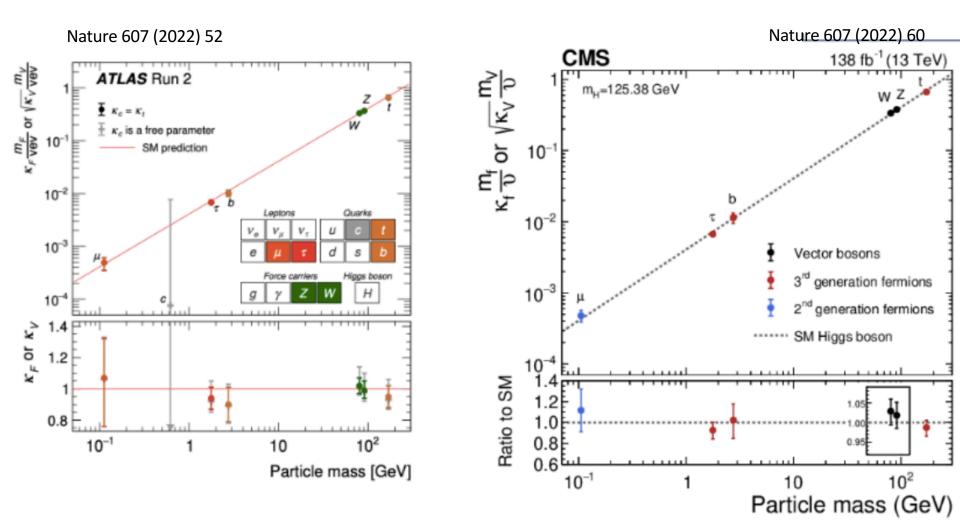
F. Maltoni, INFN -70 : Theory - Collider Physics, 2022

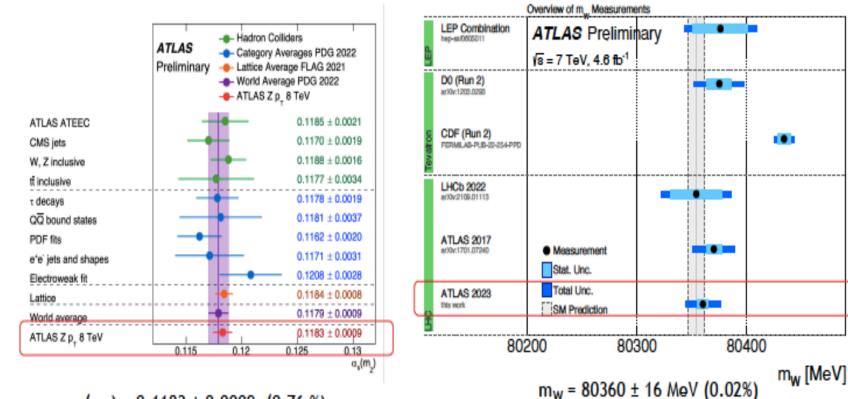

The SM legacy


The LHC legacy (so far)


Higgs Boson mass (combined LHC Run 1 + 2 results of ATLAS and CMS)

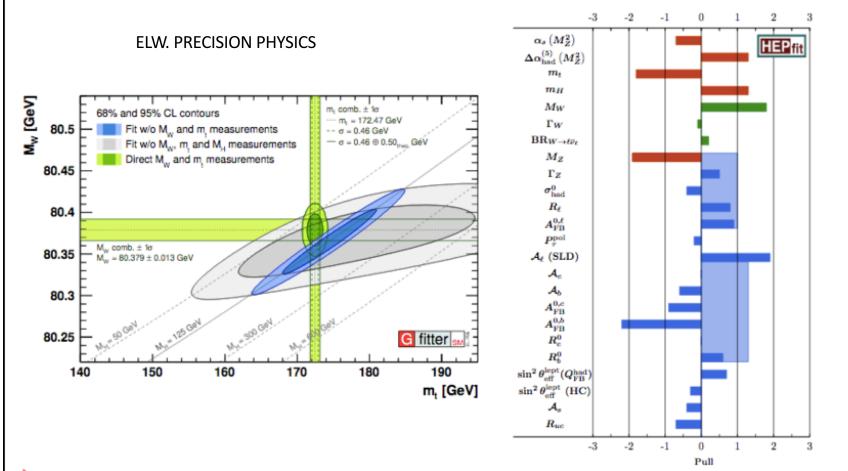

 $m_H = 124.94 \pm 0.17 \text{ (stat.)} \pm 0.03 \text{ (syst.)} \text{ GeV}$


Higgs Boson couplings

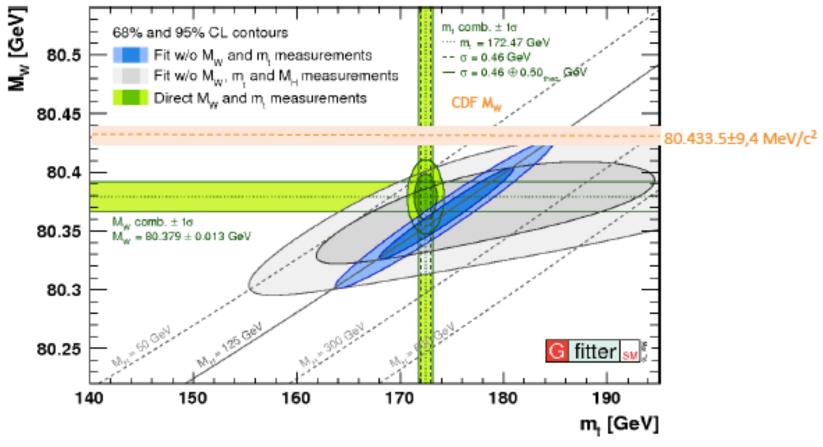


Hadron colliders are precision machines

New precise measurement of strong coupling strength


1000

New precise <u>W mass measurement</u>


 $\alpha_{\rm S}({\rm m_Z}) = 0.1183 \pm 0.0009 \ (0.76 \%)$

Precision Observables

EPJC 78 (2018) 675 , arXiv:2112.07274

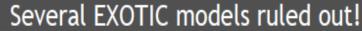
Standard Model Fit

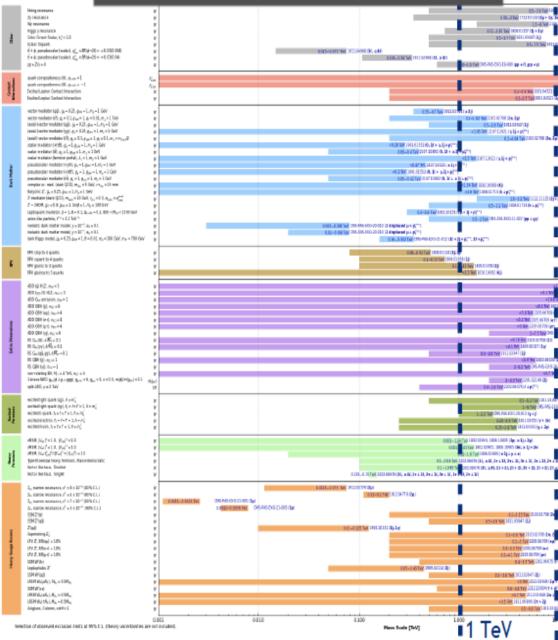
EW Precision fit from 2018

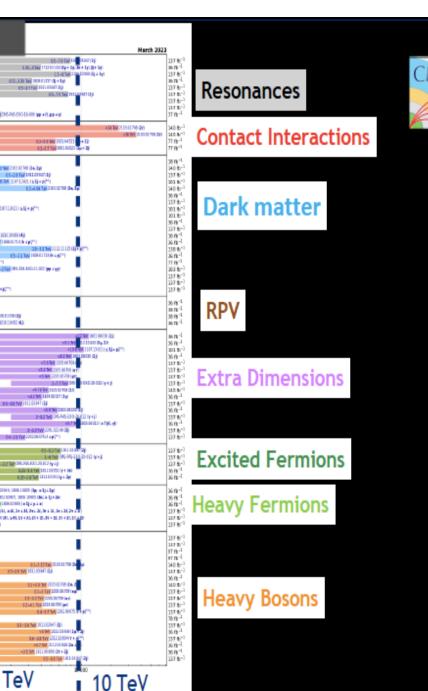
http://project-gfitter.web.cern.ch/project-gfitter/

BSM Direct Searches

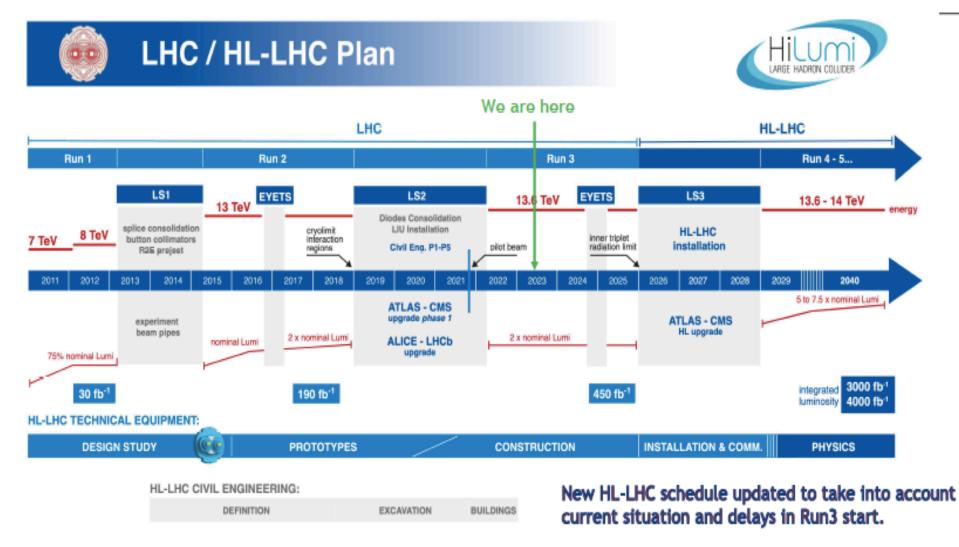
High-Energy Frontier → produce and observe BSM new **heavy** particles

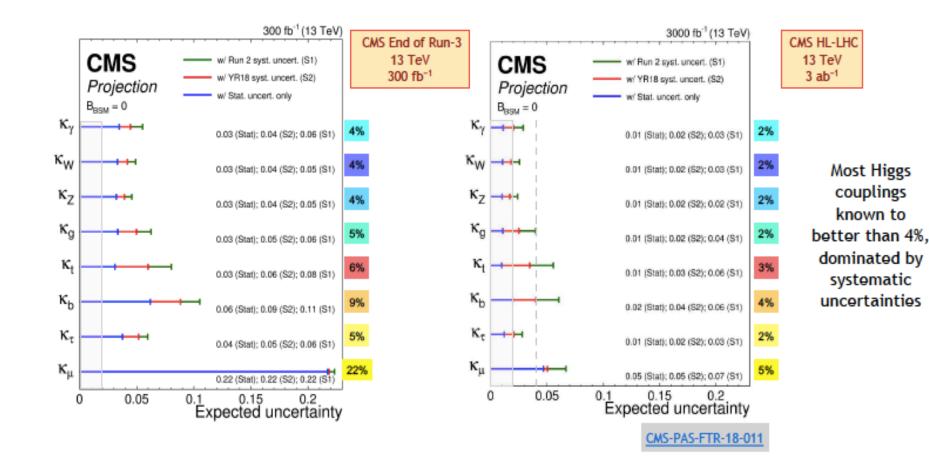

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits Status: July 2018


ATLAS Preliminary $\sqrt{s} = 8, 13 \text{ TeV}$


 $\int f dt = (3.2 - 79.8) \text{ fb}^{-1}$

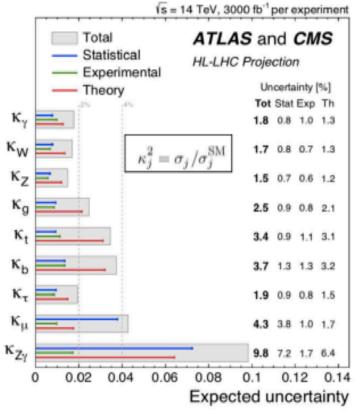
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.	2000. 0019 2010					$\int \mathcal{L} dt = 0$	3.2 - 79.8) fb ^{-*}	$v_{s} = 8, 13 \text{ lev}$
Not M_{2}		Model	ℓ,γ	Jets†	Eriss	∫£ dt[fb			Reference
SSM $\vec{x} \rightarrow vr$ 2τ $ 2kr$ $ -$	Extra dimensions	ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $g_{KK} \rightarrow tt$	2γ ≥1e,μ - 2γ multi-channel 1e,μ ≥	2j ≥2j ≥3]	- - - - 2) Yes	36.7 37.0 3.2 3.6 36.7 36.1 36.1	Mg 7.7 TeV Ma 8.6 TeV Ma 8.9 TeV Ma 8.9 TeV Ma 9.55 TeV Gast mass 4.1 TeV Gast mass 2.3 TeV Box mass 2.8 TeV	$\begin{array}{l} n=3~{\rm HLZ}~{\rm NLO}\\ n=6\\ n=6,~M_{\rm D}=3~{\rm TeV},~{\rm rot}~{\rm BH}\\ n=6,~M_{\rm D}=3~{\rm TeV},~{\rm rot}~{\rm BH}\\ k/\overline{M}_{\rm P}=0.1\\ k/\overline{M}_{\rm P}=1.0\\ \Gamma/m=15\% \end{array}$	1711.03301 1707.04147 1703.09127 1608.02285 1512.02586 1707.04147 CERN EP 2018-179 1804.10823 1803.09678
O Cl \mathcal{U}_{cp} $2 e_{\mu}$ $2 + e_{\mu}$	Gauge bosons	$\begin{array}{l} \text{SSM } Z^{*} \rightarrow \tau\tau \\ \text{Leptophobic } Z^{*} \rightarrow bb \\ \text{Leptophobic } Z^{*} \rightarrow \tau\tau \\ \text{SSM } W^{*} \rightarrow t\nu \\ \text{SSM } W^{*} \rightarrow \tau\nu \\ \text{HVT } V^{*} \rightarrow WV \rightarrow qqqq \text{ mox} \\ \text{HVT } V^{*} \rightarrow WH/ZH \text{ model B} \end{array}$	2⊤ 	1 b, ≥ 1J/ - 2 J	2j Yes Yes Yes	36.1 36.1 36.1 79.8 36.1 79.8 36.1	Z' mass 2,42 TeV Z' mass 2,1 TeV Z' mass 3.0 TeV W' mass 5.6 TeV W' mass 3.7 TeV V' mass 4,15 TeV V' mass 2.93 TeV	g _V = 3	1707.02424 1709.07242 1805.09299 1804.10823 ATLAS-CONF-2015-017 1801.06902 ATLAS-CONF-2018-016 1712.06518 CERN-EP-2018-142
Colored scatar models/r (Dirac DM) $0 \in \mu$ $1 - 4j$ Yes 66.1 mast 1.87 TeV $e^{+1.0}, e^{+1.0}, e^{+1.0} = 1.0eV$ $e^{+1.0}, e^{+1.0}, e^{-1.0}, e^{-1.0eV}$ $e^{+1.0}, e^{-1.0eV}, e^{-1.0eV}$ $e^{+1.0}, e^{-1.0eV}, e^{-1.0eV}$ $e^{+1.0}, e^{-1.0eV}, e^{-1.0eV}$ $e^{+1.0}, e^{-1.0eV}, e^{-1.0eV}$ $e^{+1.0eV}, e^{-1.0eV}, e^{-1.0eV}, e^{-1.0eV}$ $e^{+1.0eV}, e^{-1.0eV}, e^{-1$	õ	CI <i>ttqq</i>		-	-	36.1	٨	40.0 TeV T	1703.09127 1707.02424 CERN-EP-2018-174
Solar LQ 2 ^{eff} gen 2μ $22j$ $ 32$ LG mass 1605 TeV $\beta = 1$ 1605 6002 $\beta = 0$ 11006 4023 11006 4023 1106 4023 11006 4023 11006 4023 1106 4023 1106 4023 1106 4023 11006 4023 11006 4023 11006 4023 11006 4023	M	Colored scalar mediator (Dira	с DM) 0 е, µ	1 - 4 j	Yes	36.1	mand 1.67 TeV	$g=1.0, m(\chi) = 1 \text{ GeV}$	1711.03301 1711.02301 1608.02372
VLQ $Y \rightarrow Wb + X$ 1 $e, \mu \geq 1$ $b, \geq 1$ j Yes 3.2 Y ross 1.44 TeV $g[Y \rightarrow Wb) = 1, c[YWb) = 1, v[XWb) = 1/\sqrt{2}$ ATLAS-CONF-201 VLQ $B \rightarrow Hb + X$ $0 e_{\mu, 2} \gamma \geq 1$ $b, \geq 1$ Yes 20.3 B roas 1.21 TeV $a_{g=0.5}$ $g[Y \rightarrow Wb) = 1, c[YWb) = 1/\sqrt{2}$ ATLAS-CONF-201 VLQ $Q \rightarrow WqWq$ 1 $e, \mu \geq 4$ Yes 20.3 B roas 0.60 TeV orly u' and d', $\Lambda = m(q')$ 1703.09127 Excited quark $q' \rightarrow qg$ - 2 j - 37.0 q' roass 600 GeV orly u' and d', $\Lambda = m(q')$ 1703.09127 Excited quark $q' \rightarrow qg$ - - 20.3 U' roass 2.0 TeV A = 3.0 TeV A = 3.0 TeV 1411.2021 Excited lepton ℓ^* $3 e, \mu, \tau$ - - 20.3 N ⁶ roass 500 GeV A = 1.6 TeV A = 1.6 TeV A = 1.6 TeV ATLAS-CONF-201 Type III Seesaw $1 e, \mu$ $2 j$ - 20.3 N ⁶ roass 500 GeV A = 1.6 TeV A = 1.6 TeV ATLAS-CONF-201 Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ $2.3, 4 e, \mu$ (SS) - - 36.1 H ^{4±} roass 500 GeV A = 1.6 TeV	g	Scalar LQ 2 nd gen	2 µ	≥ 2 j	-	3.2	LC mass 1.05 TeV	$\beta = 1$	1605.06035 1605.06035 1508.04735
Type III Seesaw 1 e, μ ≥ 2 Yes 79.8 N ^e mass 560 GeV $m(W_{\mu}) = 2.4$ TeV, no mixing ATLAS-CONF-201 LRSM Majorana ν $2 e, \mu$ $2 j$ $ 20.3$ N ^e mass 560 GeV $m(W_{\mu}) = 2.4$ TeV, no mixing 1506.06020 Higgs triplet $H^{hh} \rightarrow \ell\ell$ $2.3.4 e, \mu$ (SS) $ 36.1$ H ^{am} mass 870 GeV DY production DY production 1710.06748 Higgs triplet $H^{hh} \rightarrow \ell\ell$ $2.3.4 e, \mu$ (SS) $ 20.3$ H ^{am} mass 870 GeV DY production $B(H_1^{hm} \rightarrow \ell r) = 1$ 1411.2021 Monotop (non-res prod) $1 e, \mu$ $1 b$ Yes 20.3 som-1 in withis perfore mass 667 GeV $a_{max-m} = 0.2$ 1410.5404 Multi-charged particles $ 20.3$ multi-charged particle mass 766 GeV DY production, $ q = 5e$ 1504.04100	Heavy quarks	$ \begin{array}{l} VLQ & \mathcal{BB} \rightarrow Wt/Zb + X \\ VLQ & \mathcal{T}_{5/3} \mathcal{T}_{5/3} \mathcal{T}_{5/3} \rightarrow Wt + \\ VLQ & Y \rightarrow Wb + X \\ VLQ & B \rightarrow Hb + X \end{array} $	multi-channel X 2(SS)/≥3 e,μ 1 e,μ 0 e,μ,2 γ	≥1 b, ≥1 j ≥ 1 b, ≥ 1 j ≥ 1 b, ≥ 1 j	Yes Yes	36.1 36.1 3.2 79.8	B mass 1.34 TeV T _{\$23} mass 1.54 TeV Y mass 1.44 TeV B mass 1.21 TeV	$ \begin{split} & SU(2) \text{ doublet} \\ & \mathcal{B}(T_{3/3} \rightarrow Wt) = 1, \ c(T_{3/3}Wt) = 1 \\ & \mathcal{B}(Y \rightarrow Wb) = 1, \ c(YWb) = 1/\sqrt{2} \end{split} $	ATLAS-CONF-2016-032 ATLAS-CONF-2018-032 CERN-EP-2018-171 ATLAS-CONF-2016-072 ATLAS-CONF-2016-072 ATLAS-CONF-2018-024 1509.04261
Type III Seesaw 1 c. μ ≥ 2 Yes 79.8 N ^e mass 560 GeV $m(W_{\mu}) = 2.4$ TeV, no mixing ATLAS-CONF-201 LRSM Majorana v $2 e, \mu$ $2j$ $ 20.3$ N ^e mass 560 GeV $m(W_{\mu}) = 2.4$ TeV, no mixing 1506.06020 Higgs triplet $H^{i+k} \rightarrow \ell \ell$ $2.3.4 e, \mu$ (SS) $ 36.1$ H^{an} mass 870 GeV DY production DY production 1710.09748 Higgs triplet $H^{i+k} \rightarrow \ell \ell$ $3 e, \mu, \tau$ $ 20.3$ H ^{an} mass 400 GeV DY production $B(H_1^{i+n} \rightarrow \ell \tau) = 1$ 1411.2921 Multi-charged particles $ 20.3$ multi-charged particle mass 667 GeV DY production, $ q = 5e$ 1504.04100	xcited fermior	Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^*	1γ - 3 σ,μ	1j 16,1j	-	36.7 36.1 20.3	q' mass 5.3 TeV b' mass 2.6 TeV C' mass 3.0 TeV	only d^* and $d^*, \Lambda = m(q^*)$ $\Lambda = 3.0 \text{ TeV}$	
$\sqrt{5} = 8 \text{ TeV}$ $\sqrt{5} = 13 \text{ TeV}$ 10^{-1} 1 10 Mass scale [TeV]		LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Monotop (non-res prod) Multi-charged particles	2 e,μ 2,3,4 e,μ (SS) 3 e,μ,τ 1 e,μ -	2j - 1b -	Yes	20.3 36.1 20.3 20.3 20.3	N ⁶ mass 2.0 TeV H ^{3,4} mass 870 GeV H ^{3,4} mass 400 GeV Som-1 invisitie periode mass 667 GeV multi-charged periode mass 765 GeV monopole mass 1.34 TeV	DY production $\mathcal{B}(H_{1}^{n+} \rightarrow \ell r) = 1$ $a_{ner-m} = 0.2$ DY production, $ g = 5e$ DY production, $ g = 1g_{D}$, spin 1/2	


*Only a celertion of the available made limite on new dates or nhanomena is shown

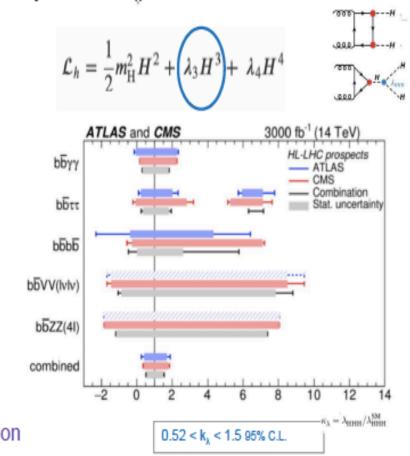

The LHC Schedule - Preparing for the future

So far LHC has delivered ~ 6% of the total planned integrated luminosity!

HL-LHC: expectations on Higgs



Physics potential of HL-LHC 1


Factor ~ 10 in data sample and improved detectors → significant increase in sensitivity for new physics and precise measurements

Higgs couplings measurements

Global fit assuming no BSM contributions to Γ_H
 □ 2-3 more precise than at end of LHC Experimental precision
 □ first 5σ observation of H→ Z challenges theory!

First observation of HH production (~ 5σ level) But only measure λ_3 to +/-50%

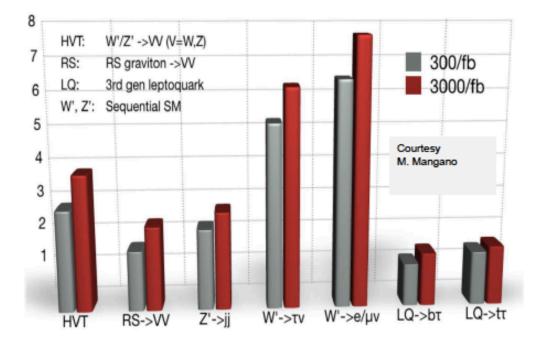
Higgs @ (HL)-LHC

1s = 14 TeV, 3000 fb⁻¹per experiment

	AS - CMS Run 1 combination	ATLAS Run 2	CMS Run 2	Current precision	HL-LHC	Total — Statistical — Experimental	ATLAS and CMS HL-LHC Projection			
	combination					- Theory	Uncertainty [%] Tot Stat Exp Th			
κ	13%	1.04 ± 0.06	1.10 ± 0.08	6%	1.8% κ _γ	16.79	1.8 0.8 1.0 1.3			
κ_W^{i}	11%	1.05 ± 0.06	1.02 ± 0.08	6%	1.7% ^κ w	=	1.7 0.8 0.7 1.3			
κ _Z	11%	0.99 ± 0.06	1.04 ± 0.07	6%	1.5% ^κ z	=	1.5 0.7 0.6 1.2			
к _g	14%	0.95 ± 0.07	0.92 ± 0.08	7%	<mark>2.5%</mark> κ _g		2.5 0.9 0.8 2.1			
κ_t	30%	0.94 ± 0.11	1.01 ± 0.11	11%	3.4% к _t		3.4 0.9 1.1 3.1			
κ_b	26%	0.89 ± 0.11	0.99 ± 0.16	11%	<mark>3.7%</mark> κ _b		3.7 1.3 1.3 3.2			
κ	15%	0.93 ± 0.07	0.92 ± 0.08	8%	1.9% κ _τ	=	1.9 0.9 0.8 1.5			
κμ	-	$1.06^{+0.25}_{-0.30}$	1.12 ± 0.21	20%	<mark>4.3%</mark> κ _μ		4.3 3.8 1.0 1.7			
κ _{Zγ}	-	1.38 ^{0.31} -0.36	1.65 ± 0.34	30%	<mark>9.8%</mark> κ _{Ζγ}		9.8 7.2 1.7 6.4			
\dot{B}_{inv}		< 11 %	< 16 %	11%	2.5%	0 0.02 0.04 0.06	0.08 0.1 0.12 0.1 Expected uncertaint			
		Nature 607, 52-59 (2022)	Nature 607, 60-68 (2022)			TH Uncertainties dominant (assumed to be 1/2 of Run 2)				

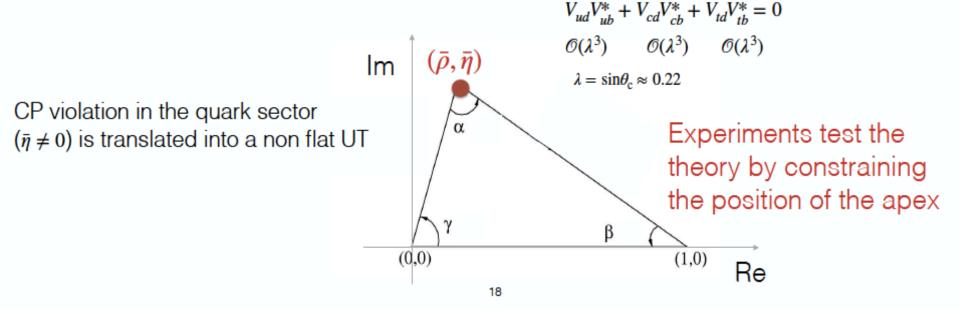
K

K


Outlook on New Physics

12 / 31

Physics potential of HL-LHC 2


5σ discovery mass reach (TeV) for new particles:

Consistency tests of the CKM paradign

Unitarity of CKM matrix implies relations of the form $\sum V_{ij}V^*_{ik} = \delta_{j,k}$, with $j \neq k$

- Each of these 6 unitarity constraints can be seen as the sum of 3 complex numbers closing a triangle in the complex plane

M. Pepe-Altarelli, Erice School, June 2023

• $N_f = 2$: 1 angle, 0 phases (Cabibbo)

$$\mathbf{V} = \begin{bmatrix} \cos \theta_{\rm C} & \sin \theta_{\rm C} \\ -\sin \theta_{\rm C} & \cos \theta_{\rm C} \end{bmatrix} \longrightarrow \text{No } \mathcal{QP}$$

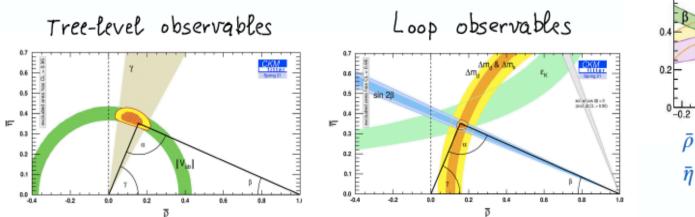
• $N_f = 3$: 3 angles, 1 phase (CKM) $c_{ij} \equiv \cos \theta_{ij}$; $s_{ij} \equiv \sin \theta_{ij}$

$$\mathbf{V} = \begin{bmatrix} c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i\delta_{13}} \\ -s_{12} c_{23} - c_{12} s_{23} s_{13} & e^{i\delta_{13}} & c_{12} c_{23} - s_{12} s_{23} s_{13} & e^{i\delta_{13}} & s_{23} c_{13} \\ s_{12} s_{23} - c_{12} c_{23} s_{13} & e^{i\delta_{13}} & -c_{12} s_{23} - s_{12} c_{23} s_{13} & e^{i\delta_{13}} & c_{23} c_{13} \end{bmatrix}$$

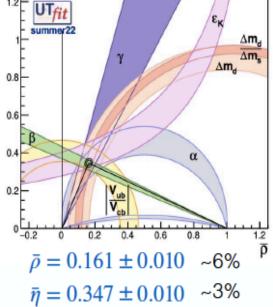
$$\begin{bmatrix} 1-\lambda^2/2 & \lambda & A\lambda^3 (\rho-i\eta) \\ -\lambda & 1-\lambda^2/2 & A\lambda^2 \\ A\lambda^3 (1-\rho-i\eta) & -A\lambda^2 & 1 \end{bmatrix} + \mathcal{O}(\lambda^4)$$


 $\lambda \approx \sin \theta_{\rm c} \approx 0.225$; $A \approx 0.81$; $\sqrt{\rho^2 + \eta^2} \approx 0.37$

The Standard Model

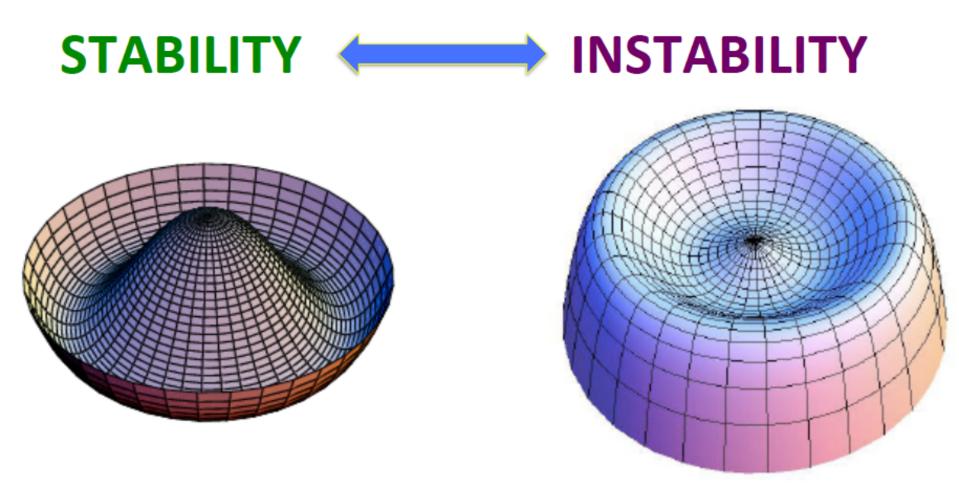

A. Pich - ISAPP 2010

 $\delta_{13} \neq 0 \quad (\eta \neq 0) \implies CP$


Consistency tests of the CKM matrix

 What is particularly noteworthy is the consistency of the tree-level determinations of CKM elements, with those obtained from meson-anti meson mixing

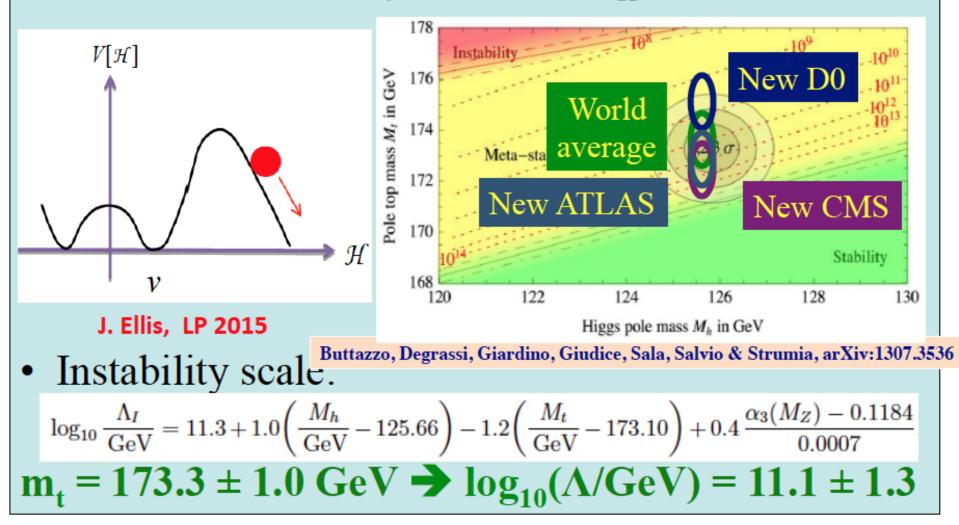
arXiv:2212.03894 UTfit,

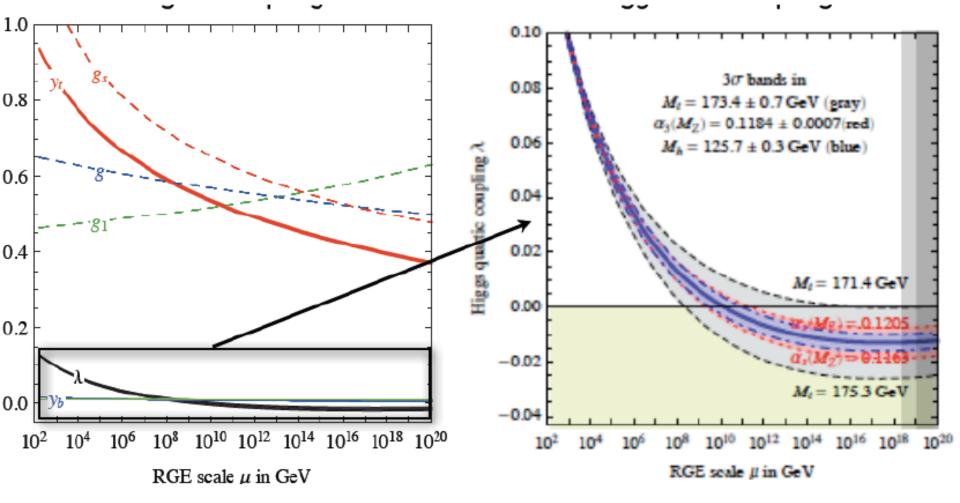


- New Physics effects (if there) are small!
- But... past examples show that it is unwise to think that few % is good enough

M. Pepe-Altarelli, Erice School, June 2023

On the peculiar value of \mathbf{M}_{H}

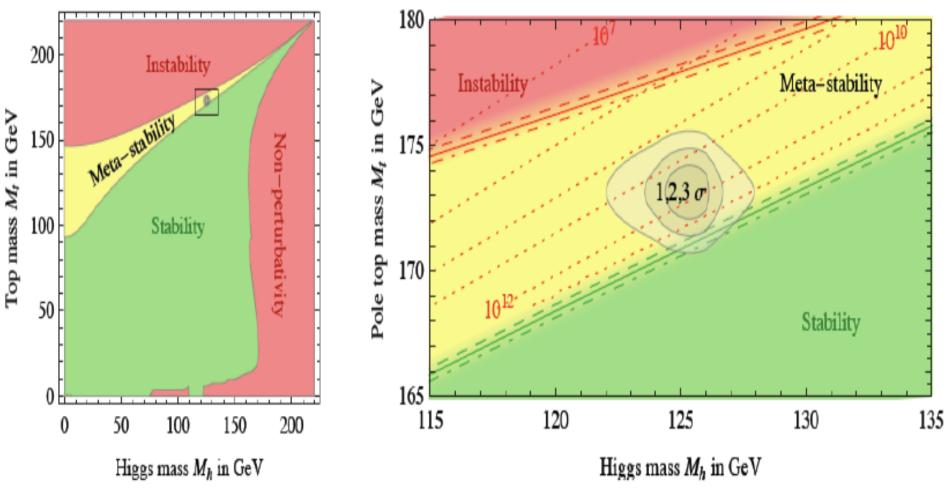

- For the SM to survive up to a very large scale, M_{GUT} or M_{Planck}: M_H in the fork 125 – 180 GeV, with ~ 125 GeV just on the verge between stability and instability of the vacuum state where the SM sits
- For the existence of a (minimal) supersymmetric extension of the SM at the elw. scale, the lightest SUSY Higgs must have M_h < 130 GeV (for M_h >120 GeV, the radiative correction to M_h is ~ 50% of the tree-level value)

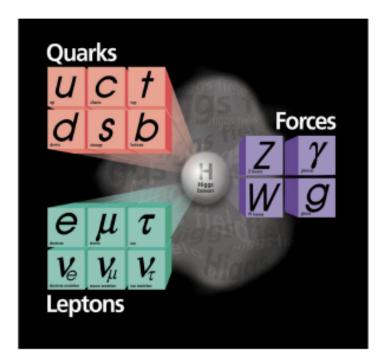


ON THE IMPORTANCE OF PRECISELY MEASURING HIGGS and TOP MASSES

Vacuum Instability in the Standard Model

Very sensitive to m_t as well as M_H




Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia 2013

For previous works: Krive, Linde '76; Krasnikov '78; Maiani, Parisi, Petronzio '78; Cabibbo et al '79; Lindner '86; Altarelli, Isisdori '96; Ellis et al 2009; Shaposhnikov et al '12; Elias-Miro' 'et a ''12; Degrassi, Di Vita, Elias-Miro, Espinosa, Giudice, Isidori, Strumia '12

LIVING DANGEREOUSLY IN A "PROBABLE" METASTABLE UNIVERSE

BEZRUKOV, KALMIKOV, KNIEHL, SHAPOSHNIKOV 2012; DEGRASSI, DI VITA, ELIAS-MIRO', ESPINOSA, GIUDICE, ISIDORI, STRUMIA 2012 FIRST COMPLETE ANALYSIS NNLO OF THE SM HIGGS POTENTIAL The Standard Model (SM) is a remarkably simple Quantum Field Theory (QFT) that describes well all microscopic phenomena that we observe in Nature

 $I = \frac{1}{2} F_{A} F_{A}^{A}$ $I = \frac{1}{2} F_{A} F_{A}^{A}$

The SM describes fundamental interactions among elementary particles

"This is short enough to write on a T-shirt!"

[John Ellis]