

M. Pallavicini

The Standard Solar Model

- The observable is the Sun we see now, which depends on a complex evolution process
 - Gravity
 - Composition: X (hydrogen), Y (helium), , Z ("metals")
 - Radiative **opacity** and plasma physics
 - Temperature and density profiles
 - Energy transport: radiative until 0.71 R $_{\odot}$, then convective
- Todays conditions act as boundary conditions
 - Two crucial observables:
 - Elio-seismology
 - Solar neutrinos

• The model as well has evolved (better cross sections, opacity and diffusion models)

Solar neutrinos from hydrogen burning

M. Pallavicini

6

Neutrino spectrum from the SSM

 $L_{\odot} = 3.846 \pm 0.015 \ 10^{26} \text{ W}$

N. Vinyoles et al., The Astrophysical Journal (2017), 835:202 Feb. 1^{st.} doi:10.3847/1538-4357/835/2/202

5

INFŇ

History: counting an atom a day at Homestake

• Extract a single atom out of $\sim 10^{31}$

Ve + 37CL ---> 37Ar + e-

- Target: 614 t of liquid soap
- 37 Ar atoms extraction with charcoal filters (every ~ months)
- Very low background proportional counters to count
 ³⁷Ar atoms (which decays by e⁻ capture with τ_{1/2} ~ 35 d)

History: Gallex/GNO @ LNGS

- A key radio-chemical experiment for solar neutrino physics
 - The first sensitive to all solar neutrino components (through an integrated, energy-weighted spectrum)
 - 30.3 ton of Ga in GaCl₃- HCl solution.

 $\nu_e + {}^{71}Ga \rightarrow {}^{71}Ge + e^-$

- Threshold: 233 keV
- Extraction every ~ 3 weeks
- The volatile GeCl₄ is extracted using N₂ flow and then inserted into proportional counters [⁷¹Ge e⁻ capture $\tau_{\frac{1}{2}} \sim 11.43$ d]

Gallex/GNO results [1990-2004]

- Extraction efficiency checked with:
 - 1.6 MCi (!) ν_e source [based on ⁵¹Cr e-capture decay, obtained from irradiated ⁵⁰Cr in reactor]
 - Initial ν_e flux 5 times the Sun
 - ε=95±3 %
 - Mono-chromatic ν_e flux, E_ν=0.75 MeV
 - At the end only, insertion of ⁷¹As
 - $^{71}\text{As} \rightarrow ^{71}\text{Ge} + e^- + \nu_e$
 - $[\tau_{\frac{1}{2}} = 2.72 \text{ d}];$
 - ε=100±1 %

Experiment	Runs	Result
GALLEX	65	77.5 ± 6.2 (stat) ± 6.2 (sys) SNU
GNO	58	62.9 ± 5.4 (stat) ± 2.5 (sys) SNU
GALLEX+GNO	123	69.3 ± 4.1 (stat) ± 3.6 (sys) SNU

STANDARD SOLAR MODEL prediction: 129 ± 7 SNU

troduction to Experimental Neutrino Physics	M. Pallavicini	79/109

In a medium with refractive index n the light speed is c/n. When a charged particle travel in the medium with a speed higher than light speed, it emits Cerenkov light. The minimum energy to emit Cerenkov light is:

Particle	Cerenkov threshold
	(Energy (MeV))
е	0.768
μ	158.7
π	209.7

Cerenkov light is emitted in a cone with a θ opening in the track direction:

$$\cos\theta = \frac{1}{n\beta}$$

 $\theta = 42^{\circ}$ for $\beta = 1.0$ in water.

Cerenkov light spectrum as function of wavelength λ :

$$\frac{dN}{d\lambda} = \frac{2\pi\alpha l}{c} \left(1 - \frac{n^2}{beta^2}\right) \frac{1}{\lambda^2}$$

where α is the fine structure constant and / is the track length.

A charged particle emits about 390 photons for 1cm track length in water with $300 \text{ nm} < \lambda < 700 \text{nm}$.

Detection of light in water

(

Cherenkov detector for solar, accelerator and atmospheric neutrinos

5

SK experiment

M. Pallavicini

e

- Detection technique: elastic scattering on electrons
 - Cherenkov light gives direction of incoming neutrino
 - Threshold ~ 3.5 5 MeV (depending on period)

Recent solar neutrino analysis with SK+KamLAND

SK Collaboration - Phys.Rev.D 94 (2016) 5, 052010

Discovery of atmospheric neutrinos at SK: 1998

Introduction to Experimental Neutrino Physics

M. Pallavicini

5

INFŇ

Intermezzo: neutrino detection in ice (Ice-Cube)

5

Introduction to Experimental Neutrino Physics

M. Pallavicini

86/109

Solution of Solar Neutrino Problem: SNO

- Sudbury Neutrino Observatory
 - Key feature: 1 kt D₂O
 - Ability to identify electron type neutrinos, and measure the others
- Three key reactions:
 - CC: $\nu_{\rm e}$ only

$$\nu_e + d \to p + p + e^+$$

• NC: All types, equal

 $\nu_x + d \rightarrow \nu_x + p + n$

• ES: All types, un-equal

$$\nu_x + e^- \to \nu_x + e^-$$

12 m Diameter Acrylic Vessel

3 neutron (NC) detection methods (systematically different)

Introduction to Experimental Neutrino Physics

M. Pallavicini

5

SNO picture gallery

SNO: One million pieces transported down in the 3 m x 3 m x 4 m mine cage and re-assembled under ultra-clean conditions. Every worker takes a shower and wears clean, lint-free clothing.

70,000 showers during the course of the SNO project

5

Art McDonald: Neutrino 2016 Introduction to Experimental Neutrino Physics

SNO spectrum

Data from Pure Heavy Water Phase in 2002

Art McDonald: Neutrino 2016

Introduction to Experimental Neutrino Physics

M. Pallavicini

5

SNO results

Art McDonald: Neutrino 2016 Introduction to Experimental Neutrino Physics

M. Pallavicini

The Borexino detector

INFN

Internal view, empty

UNFN

Internal view: inflated vessels (with N₂)

INFŇ

Internal view, filled, during calibration in 2009

Introduction to Experimental Neutrino Physics

M. Pallavicini

95/109

Neutrino detection in Borexino

7

INFN

Detector response

- Large liquid scintillator signal yields:
 - # photo-electrons:
 - energy: 6% @ 1 MeV
 - time-of-flight:
 - position: ~11 cm @ 1 MeV
 - pulse shape:
 - very good α/β and (weak) β^+/β^- discrimination

• Quasi-point-like energy deposits mimic neutrino events

EXTERNAL

 γ s (and n) from environment

• and detector materials (PMTs and SSS, mostly)

A tiny amount reaches FV

INTERNAL

 α and β emitters dissolved in the scintillator
 ¹⁴C, ²³⁸U, ²³²Th, ⁴⁰K, ³⁹Ar, ⁷Be, ...
 ⁸⁵Kr, ²¹⁰Pb, ²¹⁰Po

COSMOGENIC

Residual muons produce

long living isotopes
 (μs to days range)

¹¹C, ⁸He, ⁹C, ⁹Li,

MIGRATING

 Detaching from Nylon
 Vessel and transported by convection into the FV ²¹⁰Po, ²²²Rn

• Quasi-point-like energy deposits mimic neutrino events

EXTERNAL

 γ s (and n) from environment

• and detector materials (PMTs and SSS, mostly)

A tiny amount reaches FV

INTERNAL

 α and β emitters dissolved in the scintillator
 ¹⁴C, ²³⁸U, ²³²Th, ⁴⁰K, ³⁹Ar, ⁷Be, ...
 ⁸⁵Kr, ²¹⁰Pb, ²¹⁰Po

COSMOGENIC

Residual muons produce

long living isotopes
 (μs to days range)

¹¹C, ⁸He, ⁹C, ⁹Li,

MIGRATING

 Detaching from Nylon
 Vessel and transported by convection into the FV ²¹⁰Po, ²²²Rn

FIGHTING STRATEGY

- Shielding, muon tagging and tracking
- Material selection (steel, PMTs, nylon)
- Nylon vessel (material selection, clean construction, no air exposure)

M. Pallavicini

• Quasi-point-like energy deposits mimic neutrino events

EXTERNAL

 γ s (and n) from environment

• and detector materials (PMTs and SSS, mostly)

A tiny amount reaches FV

INTERNAL

 α and β emitters dissolved in the scintillator
 ¹⁴C, ²³⁸U, ²³²Th, ⁴⁰K, ³⁹Ar, ⁷Be, ...
 ⁸⁵Kr, ²¹⁰Pb, ²¹⁰Po

COSMOGENIC

Residual muons produce

long living isotopes
 (μs to days range)

¹¹C, ⁸He, ⁹C, ⁹Li,

MIGRATING

 Detaching from Nylon
 Vessel and transported by convection into the FV ²¹⁰Po, ²²²Rn

A long story

FIGHTING STRATEGY

- Selection of PC vendor for low ¹⁴C, dedicated plant, and custom transportation
- Distillation of PC, Water Extraction of PC+PPO solution
- Development of low Ar and Kr N_2 to remove dissolved contaminants made short!
- Extreme cleanliness of plants, carefully designed filling procedures

• Quasi-point-like energy deposits mimic neutrino events

EXTERNAL

 γ s (and n) from environment

• and detector materials (PMTs and SSS, mostly)

A tiny amount reaches FV

INTERNAL

 α and β emitters dissolved in the scintillator
 ¹⁴C, ²³⁸U, ²³²Th, ⁴⁰K, ³⁹Ar, ⁷Be, ...
 ⁸⁵Kr, ²¹⁰Pb, ²¹⁰Po

COSMOGENIC

Residual muons produce

long living isotopes
 (μs to days range)

¹¹C, ⁸He, ⁹C, ⁹Li,

MIGRATING

 Detaching from Nylon
 Vessel and transported by convection into the FV ²¹⁰Po, ²²²Rn

Introduction to Experimental Neutrino Physics

M. Pallavicini

Quasi-point-like energy deposits mimic neutrino events

EXTERNAL

 γ s (and n) from environment

• and detector materials (PMTs and SSS, mostly)

> A tiny amount reaches FV

> > **INTERNAL**

 α and β emitters dissolved in the scintillator ¹⁴C, ²³⁸U, ²³²Th, ⁴⁰K, ³⁹Ar, ⁷Be, ... 85Kr, 210Pb, 210Po

COSMOGENIC

Residual muons produce • long living isotopes (μ s to days range)

¹¹C, ⁸He, ⁹C, ⁹Li,

MIGRATING Detaching from Nylon • Vessel and transported by convection into the FV ²¹⁰Po, ²²²Rn

102/109

SN1987a: optical image before and after

INFN

• The first (and so far unique) neutrino detection for a star other than our Sun

Fig. 3. SN1987A neutrino events observed by Kamiokande, IMB and Baksan showed that the neutrino burst lasted about 13s.

• Neutrino mass type

- Majorana vs Dirac
 - NEUTRINOLESS DOUBLE BETA DECAY

• Neutrino mass scale

- What is the value of m_1 ?
 - **DIRECT NEUTRINO MEASUREMENTS** (not covered)

• Neutrino mass ordering

- $m_3 > m_1$ or $m_3 < m_1$?
 - JUNO, ORCA, DUNE

• CP violation in lepton sector ?

- What is the value of δ_{CP} ?
 - T2K and Nova, then (>2028) DUNE and T2HK

Why $0\nu\beta\beta$ is important?

- The only know process that can distinguish between Majorana and Dirac mass terms
 - i.e. $0\nu\beta\beta$ can happen only if neutrinos are their own anti-particle (truly neutral)
 - i.e. lepton number is violated
 - In all scenarios $0\nu\beta\beta$ implies new physics

NOT **MAJORANA NEUTRINOS**

SENSITIVITY OF NEXT GENERATION EXPERIMENTS PRD 96 (2017) 053001 PRD 96 (2017) 073001)

Introduction to Experimental Neutrino Physics

M. Pallavicini

106/109

Why mass is important: three ways, three "masses" !

6

β DECAY KINEMATICS

$$m_{\beta} = \sqrt{|U_{e1}|^2 m_1^2 + |U_{e2}|^2 m_2^2 + |U_{e3}|^2 m_3^2}$$

LEPTON NUMBER VIOLATION (0 $\nu\beta\beta$ DECAY) $m_{\beta\beta} = \left| U_{e1}^2 m_1 + U_{e2}^2 m_2 + U_{e3}^2 m_3 \right|$

Introduction to Experimental Neutrino Physics

Potential sensitivity: 0.35 eV (discovery at 5 σ , 0.2 upper limit)

Introduction to Experimental Neutrino Physics

M. Pallavicini

Why measuring δ_{CP} is important ?

- CINFN stiluto Kazionale di Fisica Mucleare
- We do not understand the origin of matter-antimatter asymmetry in the Universe
 - To get it you need CP violation (and baryon number violation)
 - Is the CP violation required explained by Standard Model + PMNS ?
- CP violation is proportional to so called Jarlskog invariant

 $J = \sin \vartheta_{12} \cos \vartheta_{12} \sin \vartheta_{23} \cos \vartheta_{23} \sin \vartheta_{13} \cos^2 \vartheta_{13} \sin \delta_{CP} = J_{max} \sin \delta_{CP}$

 $J_{max}^{quarks} = (3.18 \pm 0.15) \cdot 10^{-5}$ $J_{max}^{leptons} = (3.3 \pm 0.06) \cdot 10^{-2}$

- Quarks are ruled out
- Leptons, not necessarily. They may play a role, possibly not unique.
- Be aware: you need, anyway, a baryon number violation mechanism, which cannot be related to SM

Thank you