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Ricardo Broglia (1939-2022)

These lectures builds on many insights from Ricardo Broglia. 
His works and writings have been an inspiration.
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Energy scales and relevant degrees of freedom

Fig.: Bertsch, Dean, Nazarewicz (2007)
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• Physics of atomic nuclei spans several 
orders of magnitude

• Scales are well separated

• Which degrees of freedom are active 
depends on the resolution scale

• Many opportunities to construct 
effective field theories!
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• Physics of atomic nuclei spans several 
orders of magnitude

• Scales are well separated

• Which degrees of freedom are active 
depends on the resolution scale

• Many opportunities to construct 
effective field theories!

Elena Litvinova’s lectures:
Relativistic nuclear field theory 
based on meson exchange 
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What is ab initio?

Ekström, Forssén, Hagen, Jansen, Jiang, TP, Front. Phys. (2023); Google “ab initio” and “gruyere” to find the paper

Navrátil, Vary, Barrett, Properties of 12C in the ab initio nuclear shell model, Phys. Rev. Lett. 84, 5728 (2000)
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What is ab initio in nuclear theory?

Ekström et al. Front. Phys. (2023) “interpret the 
ab initio method to be a systematically 
improvable approach for quantitatively describing 
nuclei using the finest resolution scale possible 
while maximizing its predictive capabilities.”

Q: What does this mean for computing atomic nuclei?
A1: Ab initio means starting from quantum 
chromodynamics, the fundamental theory of the strong 
nuclear force.
A2: Ab initio means starting from nucleons and the 
interactions between them.
A3: Ab initio means starting from nuclear energy 
density functionals. 6



Precision computations from lattice QCD

Proton-neutron mass splittings from lattice QCD & QED.
Borsanyi et al., Science (2015); arXiv:1406.4088  

Hadron mass spectrum from lattice QCD.
Dürr et al., Science (2009); arXiv:0906.3599  

Lattice QCD very precise for hadrons, but what about nuclei as bound states of hadrons?
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Towards Lattice QCD computations of hadron bound states

H-baryon, hypothetical six-quark bound state uuddss, computed at !! = !" = 420 MeV

& = lattice spacing; '# = H-baryon binding energy

Jeremy R. Green, Andrew D. Hanlon, Parikshit M. Junnarkar, Hartmut Wittig, arXiv: 2103.01054

Challenges:
• ConQnuum limit ✔ 
• Physical meson masses ❌
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Computing nuclei to QCD

The computation of light nuclei from lattice QCD is controversial, see discussion in
[Drischler, Haxton, McElvain, Mereghetti, Nicholson, Vranas, Walker-Loud, arXiv:1910.07961]
 
There was a controversy about whether nuclear binding increases with increasing pion mass 
[see, e.g., NPLQCD collaboration] or whether it decreases [see, e.g., HAL QCD collaboration]; 
it seems that there is a resolution [Amy Nicholson et al, arXiv:2112.04569] in favor of the 
latter.

Theorists are ready to match effective field theories to lattice QCD data, and compute nuclei 
as heavy as 40Ca, see [Barnea et al, Phys. Rev. Lett. (2015); Contessi et al, Phys. Lett. B (2017); 
C. McIlroy et al Phys. Rev C (2018); Bansal et al., Phys. Rev. C 98, 054301 (2018)]

Enter effective field theories …
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Chiral EFT

Energy scales and relevant degrees of freedom

Fig.: Bertsch, Dean, Nazarewicz (2007)
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Effective field theories: ideas 
Fields (, *. Interaction via exchange of a heavy meson * with mass Mhi 

Amplitude at small momenta + ≪ -$%  (introduce separation of scales) 

Result: A systematic improvable theory, valid at low momenta + ≪ -$%, in powers of +/-$%  

!

" "

Nice pedagogical lectures on this topic: H.-W. Hammer, Sebastian König, arXiv:1610.02961 

Note: this is a sum of increasingly singular 
terms; regularization (e.g. via cutoff) and 
renormalization required 
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Lepage: How to renormalize the Schrödinger equation
Hamiltonian: Coulomb potential V = −$/& plus 
an unknown short-range part.

Q: How to reproduce available scattering data 
for this potential?

A: Use series of singular potentials: 
V = −

$
& + ()

!*"
# & − +$)%∇!*"

(#) & + ⋯
(Here, ) is a small but finite range, so ./) is a 
momentum cutoff; ( and +$ are dimensionless 
low-energy constants.)

Note: the series will not approximate the true 
short-range potential but rather only mimic its 
effect at low energies

Peter Lepage., arXiv:nucl-th/9706029

Q: Do you see the power coun\ng at work?
Q: Can you verify this quan\ta\vely?
Q: What is the breakdown energy?
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Effective field theories: ideas 
We do not need to know all the details (i.e. short-range physics) of the strong interaction to 
compute nuclei. 

Effective field theories provide us with a systematically improvable approach that is valid up 
to some breakdown scale (in energy or momenta) 

Effective field theories are particularly constrained in case of spontaneous symmetry breaking
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• The pion is the Nambu-Goldstone boson of the spontaneously broken chiral symmetry 
• Severely constrains the form of the nucleon-pion interaction J
• Interactions between Nambu-Goldstone bosons are weak J 
• Provides the connection to QCD via chiral perturbation theory  

• Pion exchange constitutes the long-range part of the nuclear force
• Everything else (presumably unknown/short ranged) is captured by contact interactions 

and derivatives thereof
• Power counting orders contributions

There are clouds in paradise (e.g. questions regarding the power counting), 
but these lectures will not dwell on them

One-pion exchange potenQal:  / + = −
&!
"

'(#"
(*$⋅,)	(*"⋅,)
/#" 	0	,"

11 ⋅ 12

Chiral effective field theory
[Weinberg; van Kolck; Epelbaum, Gloeckle, Krebs, Meissner; Entem & Machleidt; Kievsky, Marcucci, Viviani; Piarulli; Ekström, …]



Q: Why three-nucleon forces?

15

Chiral effective field theory
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Q: Why three-nucleon forces?
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Chiral effective field theory
[Weinberg; van Kolck; Epelbaum, Gloeckle, Krebs, Meissner; Entem & Machleidt; Kievsky, Marcucci, Viviani; Piarulli; Ekström, …]

A1: In an EFT, one writes down everything 
that is allowed by symmetries and then 
orders according to a power counQng
A2: Nucleons are composite parQcles, and 
many-body forces arise when treaQng them 
as point parQcles, i.e. when removing high-
momentum “sQff” degrees of freedom
A3: all of the above



Three nucleon forces
• How do 3NFs arise in nuclear physics?
• What are omitted degrees of freedom? Can you draw diagrams that explain the 

origin of three nucleon forces? 

19



Three nucleon forces
• How do 3NFs arise in nuclear physics?
• What are omitted degrees of freedom? Can you draw diagrams that explain the 

origin of three nucleon forces? 

3 > Λ

Removal (or omission) 
of high-energy degrees 
of freedom leads to 
new interactions.
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3NFs in a theory with pions

The essential rationale is:
Nuclei are extended objects, i.e. they have intrinsic degrees of freedom. They have excited 
states, can be deformed etc. 
We treat nuclei as point particles, i.e. we neglect their intrinsic structure. While this is 
justified at low energies (low resolution), it comes with a price tag of 3NFs, 4NFs, … 21



Summary EFT Intro / three-nucleon forces
• Lattice QCD not yet there to compute nuclei

• Even when that day arrives, the physical degrees of freedom are colorless hadrons

• Effective field theories can, in principle, be matched to QCD input 
• Meanwhile, we use data from nuclei

•  Three-nucleon forces naturally arise as high-energy degrees of freedom 
are removed (“integrated out”) 
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Chiral effective field theory: state of the art

Reinert, Krebs, Epelbaum, 
Eur. Phys. J. A 54, 86 (2018) 
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Q: Can you spot successes and failures? 23



Chiral effective field theory: state of the art
Problems: 
• Inspection shows that the theory at leading order is cutoff dependent (not properly 

renormalized), see [Nogga, Timmermans, van Kolck, Phys. Rev. C 72, 054006 (2005)] 
• So far, interactions from chiral effective field theory that were constrained in two- and three-

nucleon systems, have failed accurately reproduce binding energies and charge radii in 
medium-mass nuclei.

Proposed solution: Optimize low-energy coefficient by also using data from medium-mass nuclei 

Ekström et al., Phys. Rev. C 91, 051301(R) (2015) 24



Chiral effective field theory: state of the art

Chiral EFT inspired interaction

Used 4 three-body contacts (instead of 2 in chiral EFT)

Adjusted energies of cluster states 
(e.g. 8Be = 4He + 4He, Hoyle state in 12C = 4He + 4He + 4He)

Result: accurate charge radii come out

Elhatisari et al., Nature 630, 59 (2024), arXiv:2210.17488
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Effective field theories provide us with a consist 
formulation of

interactions 

and 

currents:

Three-body forces go 
hand in hand with two-
body currents. 26

Chiral effective field theory: consistency of currents and interactions
[Weinberg; van Kolck; Epelbaum, Gloeckle, Krebs, Meissner; Entem & Machleidt; Ekström, …]
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Consistency between Hamiltonians and currents
example: electromagnetic interactions

!"
!# =

$
ℏ [%, '] Heisenberg Eq. of motion

!"
!# = −∇ ⋅ (Continuity equation

We see that Hamiltonians and currents 
must fulfill %

ℏ
3, 4 + ∇ ⋅ 7 = 0

As EFT Hamiltonians contain momentum-
dependent interacQons, this is a non-trivial 
constraint on the current operator

Leading order: 1-body current Subleading corrections: 2-body currents
a.k.a. “meson-exchange currents”



Role of two-body currents: magnetic moments
The magnetic moment is a short-range operator, so we expect significant contributions from 
two-body currents

S. Pastore, Steven C. Pieper, R. Schiavilla, R. B. Wiringa, Phys. Rev. C 87, 035503 (2013); arXiv:1212.3375 28



Two-body currents solve 50-year-old puzzle of quenched !-decays

Martinez-Pinedo, Poves, Caurier, and Zuker, Phys. Rev. C 53, R2602 (1996)

• Wilkinson (1973):       quenching 
factor +2 ≈ 0.90 for nuclei with 
; = 17…21

• Brown & Wildenthal (1985): 
quenching factor +2 ≈ 0.77 for 
nuclei with ; = 17…40

• Martinez-Pinedo et al. (1996): 
quenching factor +2 ≈ 0.74 for 
nuclei with ; = 40…60

Puzzle: The strengths of Gamow-Teller transitions (operator ∝ A7C⃗1±) in nuclei are smaller 
(“quenched”) than what is expected from the D-decay of the free neutron.
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! decays in medium-mass nuclei, including two-body currents

IMSRG computations with NN-N4LO + 3Nlnl interaction
31Gysbers, Hagen, Holt, Jansen, Morris, Navra5l, TP, Quaglioni, Schwenk, Stroberg & Wendt, Nature Physics (2019); arXiv:1212.3375



! decay of 100Sn, including two-body currents

Coupled-cluster computations based 
on various potentials from chiral EFT 

Open symbols: no two-body currents

Full symbols: with two-body currents

Two-body currents reduce the 
systematic uncertainty from the set of 
chiral interactions. 

Traditional models need quenching 
factors to describe data. 
(open symbols: no quenching). 

33Gysbers, Hagen, Holt, Jansen, Morris, Navratil, TP, Quaglioni, Schwenk, Stroberg & Wendt, Nature Physics (2019); arXiv:1212.3375



Summary two-body currents
• Two-body currents (2BCs) naturally arise in theories with three-body 

forces
• In chiral EFTs, these are subleading corrections

• 2BCs deliver visible contributions to nuclear magnetic moments
• 2BCs provide us with a solution to the long-standing puzzle of quenched 
! decays  
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Progress in computing nuclei from EFT Hamiltonians

2021 Tremendous progress
• Ideas from EFT and RG
• Methods that scale polynomially 

with mass number
• Ever-increasing computing powers

1. Ab initio methods not limited to 
light nuclei

2. Computing of (most) nuclei only 
exponentially hard if one chooses so

3. Why solve approximate 
Hamiltonians exactly? 
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Symmetries of the single-particle basis

Q: What are the relevant symmetries when computing nuclei?
A1:
A2:
A3:
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Symmetries of the single-particle basis

Q: What are the relevant symmetries when computing nuclei?
A1: Translational invariance
A2: Rotational invariance
A3: Parity

(Isospin is conserved by the strong force but broken by the Coulomb force)
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Symmetries of the single-particle basis
Bases:
1. Lattice in position space with periodic boundary conditions (E9 sites, lattice spacing &) 
• Conserved quantities:
• Lacking/not conserved:
• IR/UV cutoffs:

2. Spherical harmonic oscillator with maximum energy G + 9
2
ℏI and oscillator length 

J =
ℏ
/:

$
" 

• Conserved quantities: 
• Lacking/not conserved:
• IR/UV cutoffs:
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Symmetries of the single-particle basis
Bases:
1. Lapce in posiQon space with periodic boundary condiQons (E9 sites, lapce spacing &) 
• Conserved quanQQes: momentum, parity
• Lacking/not conserved:
• IR/UV cutoffs:

2. Spherical harmonic oscillator with maximum energy G + 9
2
ℏI and oscillator length 

J =
ℏ
/:

$
" 

• Conserved quanQQes: 
• Lacking/not conserved:
• IR/UV cutoffs:
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Symmetries of the single-particle basis
Bases:
1. Lattice in position space with periodic boundary conditions (E9 sites, lattice spacing &) 
• Conserved quantities: momentum, parity
• Lacking/not conserved: angular momentum
• IR/UV cutoffs: 

2. Spherical harmonic oscillator with maximum energy G + 9
2
ℏI and oscillator length 

J =
ℏ
/:

$
" 

• Conserved quantities: 
• Lacking/not conserved:
• IR/UV cutoffs:
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Symmetries of the single-particle basis
Bases:
1. Lattice in position space with periodic boundary conditions (E9 sites, lattice spacing &) 
• Conserved quantities: momentum, parity
• Lacking/not conserved: angular momentum
• IR/UV cutoffs: Λ;< =

!
=>

, Λ?@ =
!
>

2. Spherical harmonic oscillator with maximum energy G + 9
2
ℏI and oscillator length 

J =
ℏ
/:

$
" 

• Conserved quantities: 
• Lacking/not conserved:
• IR/UV cutoffs:
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Symmetries of the single-parGcle basis
Bases:
1. Lattice in position space with periodic boundary conditions (E9 sites, lattice spacing &) 
• Conserved quantities: momentum, parity
• Lacking/not conserved: angular momentum
• IR/UV cutoffs: Λ;< =

!
=>

, Λ?@ =
!
>

2. Spherical harmonic oscillator with maximum energy G + 9
2
ℏI and oscillator length 

J =
ℏ
/:

$
" 

• Conserved quantities: angular momentum, parity
• Lacking/not conserved:
• IR/UV cutoffs:
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Symmetries of the single-particle basis
Bases:
1. Lattice in position space with periodic boundary conditions (E9 sites, lattice spacing &) 
• Conserved quantities: momentum, parity
• Lacking/not conserved: angular momentum
• IR/UV cutoffs: Λ;< =

!
=>

, Λ?@ =
!
>

2. Spherical harmonic oscillator with maximum energy G + 9
2
ℏI and oscillator length 

J =
ℏ
/:

$
" 

• Conserved quantities: angular momentum, parity
• Lacking/not conserved: momentum
• IR/UV cutoffs:
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Symmetries of the single-particle basis
Bases:
1. Lattice in position space with periodic boundary conditions (E9 sites, lattice spacing &) 
• Conserved quantities: momentum, parity
• Lacking/not conserved: angular momentum
• IR/UV cutoffs: Λ;< =

!
=>

,   Λ?@ =
!
>

2. Spherical harmonic oscillator with maximum energy G + 9
2
ℏI and oscillator length 

J =
ℏ
/:

$
" 

• Conserved quantities: angular momentum, parity
• Lacking/not conserved: momentum

• IR/UV cutoffs: Λ;< ≈ 2(G + 9
2
)
A$" M/J, Λ?@ ≈ (2G + 9

2
)

$
" M/J

In other words: E& ≈ 2(G +
9
2
)

$
" J, and & ≈ 2(G +

9
2
)
A$" J

45



Comments on bases and symmetries
• One could work with (relative) Jacobi coordinates and have all relevant  

symmetries respected in the basis.
• Antisymmetrization of the wave function increases exponentially with increasing 

mass number; approach limited to few-body systems

• One could work in the no-core shell model, i.e. using all Slater 
determinants up to " + /

0
ℏ%; the center-of-mass wave function then 

is a Gaussian with frequency ℏ%.
• Cost of exact diagonalization increases exponentially with mass number; limited 

to light nuclei

• Instead: Use angular-momentum projection for the lattice and intrinsic 
Hamiltonian & = ( − (123 + * in the harmonic oscillator basis.
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Efficient computations of atomic nuclei
Question: How much effort does it take to compute a nucleus?

To answer this question, assume that we want to compute a nucleus with mass number 4 
and using an interaction with a momentum cutoff Λ. 

Q: Taking a 3D lattice in position space, how many lattice sites do we need (as a function of 
4 and Λ. 
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Efficient computations of atomic nuclei
QuesQon: How much effort does it take to compute a nucleus?

To answer this ques\on, assume that we want to compute a nucleus with mass number 4 
and using an interac\on with a momentum cutoff Λ. 

Q: Taking a 3D lafce in posi\on space (or a spherical harmonic oscillator basis), how many 
lafce sites (states) do we need (as a func\on of 4 and Λ. 

A: Simple answer: the nucleus has to fit into the basis in posi\on space, i.e. 6) > 8 ∝ 4$/# 
and in momentum space, i.e. )" > Λ.

One can work this out in more detail and finds
• Number of single-par\cle states :* ∝ 8Λ #

• Number of single-par\cle states :* ≈ (+,-.4
/
0!

#
 with (+,-.~=(1).

Interac\ons with smaller cutoffs require much smaller spaces!
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Efficient computations of atomic nuclei
Question: How much effort does it take to compute a nucleus?

To answer this question, assume that we want to compute a nucleus with mass number 4 
and using an interaction with a momentum cutoff Λ. 

Q: Taking a 3D lattice in position space, how many lattice sites to we need (as a function of 
4 and Λ. 

A: Let us work this out:
• A nucleus with mass number 4 occupies a volume A = 4/B1 with the nuclear saturation 

density B1 ≈ 0.16 fm-3. 
• The lattice spacing is ) = )

/, and the number of states per unit volume is 2"3 =
+
"# =

+/#
)#  

where F = 4 is the spin-isospin degeneracy. 
• Thus we need :* =

%/#
)#4$

4 single-particle states.

• One can make this prettier: use B1 ∝ H5# and get :* ≈ (+,-.4
/
0!

#
 with (+,-.~=(1).

• For a momentum cutoff of Λ = 2fm-1, one gets :* ≈ (3…6)4 single-particle states.    
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Similarity renormalization group (SRG) transformation
 Glazek, & Wilson, PRD 48 (1993) 5863; 49 (1994) 4214; Wegner, Ann. Phys. 3 (1994) 77; Perry, Bogner, & Furnstahl (2007)

Main idea: decouple low from high momenta via a (unitary) similarity transformation

Unitary transformation 

Evolution equation

Choice of unitary transformation through (one does not need to construct U explicitly).

yields scale-dependent potential that becomes more and more diagonal

Note: Baker-Campbell-Hausdorff expansion implies that SRG of 2-body force generates many-body 
forces 
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SRG evolution of a chiral potential

Fig.: Bogner & Furnstahl. See http://www.physics.ohio-state.edu/~ntg/srg



Jurgenson, Furnstahl, Navratil, Phys. Rev. Lett. 103, 082501 (2009); arXiv:0905.1873

RG Evolution of Nuclear Many-Body Forces

L =	cutoff or resolution scale
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Q: How large are (omitted in this calculation) four-nucleon forces?

RG EvoluKon of Nuclear Many-Body Forces

L =	cutoff or resolution scale
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Q: How large are (omitted in this calculation) four-nucleon forces?
A: The four-body system does not meet data; difference is about 0.2 MeV ⟷ 1% of binding energy

RG Evolution of Nuclear Many-Body Forces

L =	cutoff or resolution scale
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Size of Hilbert space in many-body calculations
QuesQon: Once the single-parQcle basis is chosen, what is the dimension of the 
Hilbert space?  

To answer this ques\on, assume that we want to compute a nucleus with mass number 4 and 
using an interac\on with a momentum cutoff Λ. [For Λ = 2fm-1, one gets :* ≈ (3…6)4]
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Size of Hilbert space in many-body calculations
Question: Once the single-particle basis is chosen, what is the dimension of the 
Hilbert space?  

To answer this question, assume that we want to compute a nucleus with mass number 4 and 
using an interaction with a momentum cutoff Λ. [For Λ = 2fm-1, one gets :* ≈ (3…6)4]

Exact solution has exponential cost: Hilbert space dimension 

• 24
4 ≈ $

)6

%
& 46	 for 4 ≫ 1. 

• 34
4 ≈ #

%)6

%
& !7

%
6
	for 4 ≫ 1.
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Size of Hilbert space in many-body calculations
Question: Once the single-particle basis is chosen, what is the dimension of the 
Hilbert space?  

To answer this question, assume that we want to compute a nucleus with mass number 4 and 
using an interaction with a momentum cutoff Λ. [For Λ = 2fm-1, one gets :* ≈ (3…6)4]

Exact solution has exponential cost: Hilbert space dimension 

• 24
4 ≈ $

)6

%
& 46	 for 4 ≫ 1. 

• 34
4 ≈ #

%)6

%
& !7

%
6
	for 4 ≫ 1.

Q: Why solve an approximate Hamiltonian exactly?
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Summary Hilbert spaces

• Simple arguments tie the nucleus and interaction under consideration to the 
dimension of Hilbert space 

• Smaller cutoffs are a big deal: they require much smaller bases  

• The exact solution of the nuclear many-body computation is exponentially 
expensive
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